Cosmic rays in galaxy clusters: transport and feedback

Christoph Pfrommer¹

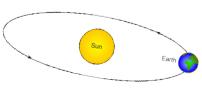
in collaboration with

T. Thomas¹, K. Ehlert¹, S. Jacob², R. Weinberger³, R. Pakmor⁴, V. Springel⁴

¹AIP, ²HITS, ³Harvard, ⁴MPA

ICM Physics and Modeling, MPA/ESO, Garching, Oct 2018

Outline


- Cosmic ray transport
 - Introduction
 - Cosmic ray hydrodynamics
- AGN feedback
 - Steady-state models
 - Cosmic rays in jets

Cosmic ray feedback: an extreme multi-scale problem

Milky Way-like galaxy:

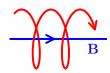
$$r_{\rm gal}\sim 10^4~{
m pc}$$

gyro-orbit of GeV cosmic ray:

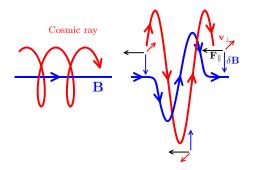
$$\emph{r}_{cr} = rac{\emph{p}_{\perp}}{\emph{e}\,\emph{B}_{\iota\iota G}} \sim 10^{-6}~\textrm{pc} \sim rac{1}{4}~\textrm{AU}$$

 \Rightarrow need to develop a fluid theory for a collisionless,

non-Maxwellian component!


Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2018)

Interactions of CRs and magnetic fields

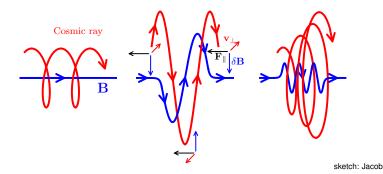


sketch: Jacob

Interactions of CRs and magnetic fields

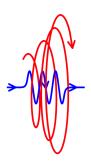
sketch: Jacob

gyro resonance:


$$\omega - \mathbf{k}_{||} \mathbf{v}_{||} = \mathbf{n} \Omega$$

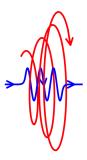
Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency

Interactions of CRs and magnetic fields


- gyro resonance: $\omega k_\parallel v_\parallel = n\Omega$ Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency
- \bullet CRs scatter on magnetic fields \to isotropization of CR momenta

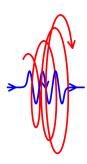
CR streaming and diffusion

- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_A, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_A
 - wave damping: transfer of CR energy and momentum to the thermal gas



CR streaming and diffusion

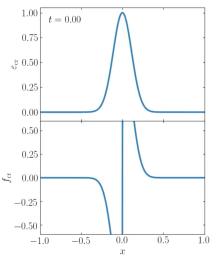
- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_A, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_A
 - wave damping: transfer of CR energy and momentum to the thermal gas

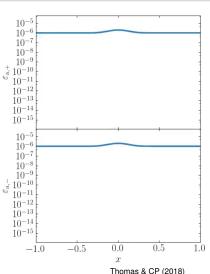

→ CRs exert pressure on thermal gas via scattering on Alfvén waves

CR streaming and diffusion

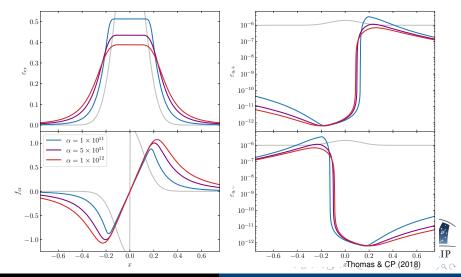
- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_A, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_A
 - wave damping: transfer of CR energy and momentum to the thermal gas

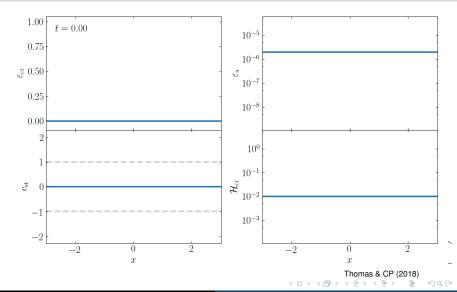
→ CRs exert pressure on thermal gas via scattering on Alfvén waves


weak wave damping: strong coupling \rightarrow CR stream with waves strong wave damping: less waves to scatter \rightarrow CR diffusion prevails



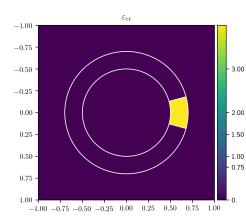
Non-equilibrium CR streaming and diffusion


Coupling the evolution of CR and Alfvén wave energy densities



Non-equilibrium CR streaming and diffusion

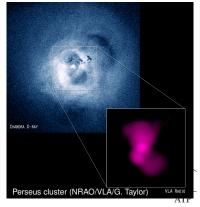
Varying damping rate of Alfvén waves modulates the diffusivity of solution

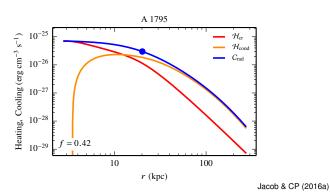

Steady CR source: CR Alfvén wave heating

Anisotropic CR streaming and diffusion - AREPO

CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics

- CR streaming and diffusion along magnetic field lines in the self-confinement picture
- moment expansion similar to radiation hydrodynamics
- accounts for kinetic physics: non-linear Landau damping, gyro-resonant instability, . . .
- Galilean invariant and causal transport
- energy and momentum conserving

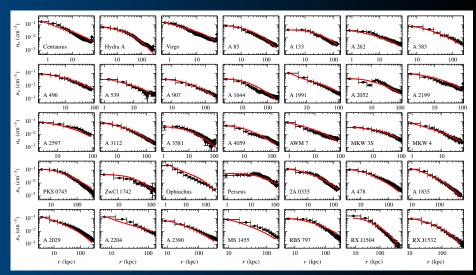

Thomas, Pakmor, CP (in prep.)


Feedback by active galactic nuclei

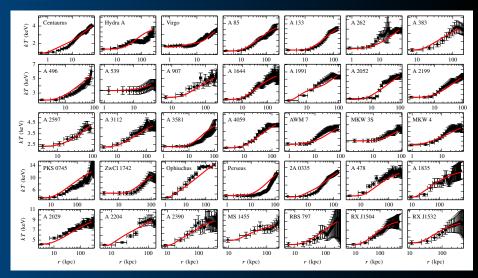
Paradigm: accreting super-massive black holes at galaxy cluster centers launch relativistic jets, which provide energetic feedback to balance cooling ⇒ **but how?**

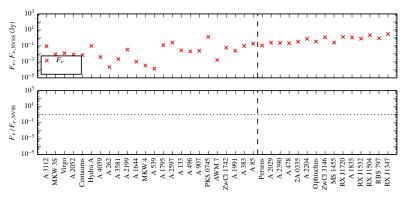
- Jacob & CP (2017a,b): study large sample of 40 cool core clusters
- spherically symmetric steady-state solutions where cosmic ray heating balances radiative cooling

Case study A1795: heating and cooling



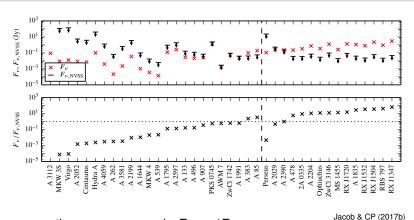
- CR heating dominates in the center
- ullet conductive heating takes over at larger radii, $\kappa=0.42\kappa_{\mathrm{Sp}}$
- $\mathcal{H}_{cr} + \mathcal{H}_{cond} \approx \mathcal{C}_{rad}$: modest mass deposition rate of 1 M $_{\odot}$ yr $^{-1}$




Gallery of solutions: density profiles

Gallery of solutions: temperature profiles

Hadronically induced radio emission



Jacob & CP (2017b)

Hadronically induced radio emission: NVSS limits

- ullet continuous sequence in $F_{
 u, pred}/F_{
 u, NVSS}$
- CR heating viable solution for non-RMH clusters
- CR heating solution ruled out in radio mini halos (RMHs)

self-regulated feedback cycle driven by CRs

self-regulated feedback cycle driven by CRs

AGN injects CRs

self-regulated feedback cycle driven by CRs

AGN injects CRs

CR heating balances cooling

self-regulated feedback cycle driven by CRs

AGN injects CRs

CR heating balances cooling

CRs stream outwards and become too dilute to heat the cluster

self-regulated feedback cycle driven by CRs

AGN injects CRs

CR heating balances cooling

CRs stream outwards and become too dilute to heat the cluster

radio mini halo

self-regulated feedback cycle driven by CRs

AGN injects CRs

 \rightarrow

CR heating balances cooling

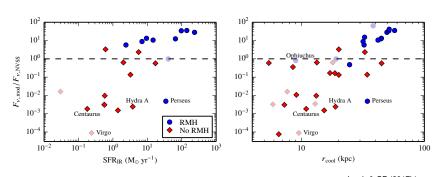
cluster cools and triggers AGN activity

CRs stream outwards and become too dilute to heat the cluster

radio mini halo

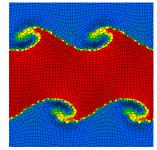
self-regulated feedback cycle driven by CRs

CR heating balances cooling


CRs stream outwards and become too dilute to heat the cluster

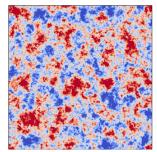
Self-regulated heating/cooling cycle in cool cores

possibly CR-heated cool cores vs. radio mini halo clusters:


Jacob & CP (2017b)

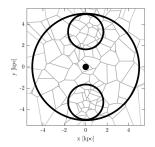
- simmering SF: CR heating is effectively balancing cooling
- abundant SF: heating/cooling out of balance

MHD jet simulations


AREPO: unstructured-mesh

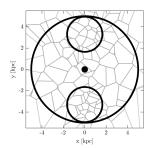
- MHD moving-mesh code AREPO
- NFW cluster potential

MHD jet simulations


initial magnetic field

- MHD moving-mesh code AREPO
- NFW cluster potential
- external turbulent magnetic field (Kolmogorov)

MHD jet simulations

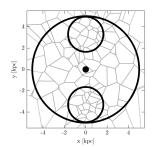

AREPO: jet injection region (Weinberger+ 2017)

- MHD moving-mesh code AREPO
- NFW cluster potential
- external turbulent magnetic field (Kolmogorov)
- jet module
 - prepare low-density state in pressure equilibrium
 - inject kinetic energy, B, and CRs
 - refine to sustain density contrast

Cosmic ray modelling

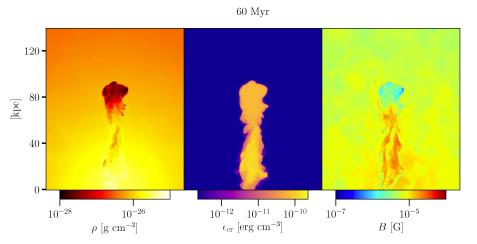
AREPO: jet injection region
(Weinberger+ 2017)

subgrid CR acceleration:

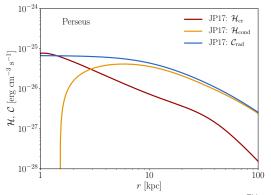

reality: internal shocks

• code: $E_{cr}/E_{th} \geq 0.5$

Cosmic ray modelling

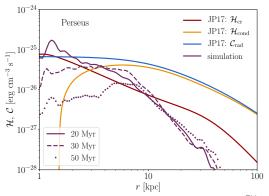

AREPO: jet injection region
(Weinberger+ 2017)

- subgrid CR acceleration:
 - reality: internal shocks
 - code: $E_{\rm cr}/E_{\rm th} \ge 0.5$
- CR transport:
 - CRs are advected
 - emulate CR streaming ≈ anisotropic CR diffusion & Alfvén cooling



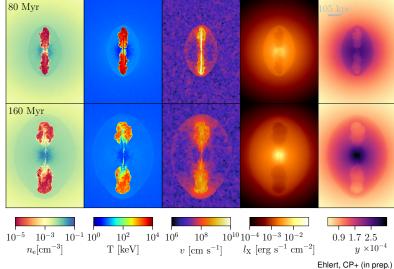
Jet simulation: gas density, CR energy density, B field

Perseus cluster – heating vs. cooling: theory

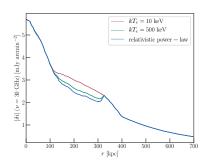

Ehlert, Weinberger, CP+ (2018)

• CR and conductive heating balance radiative cooling: $\mathcal{H}_{cr} + \mathcal{H}_{th} \approx \mathcal{C}_{rad}$: modest mass deposition rate of 1 M_{\odot} yr⁻¹

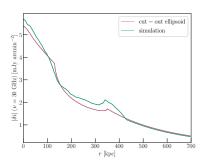
Perseus cluster – heating vs. cooling: simulations



- Ehlert, Weinberger, CP+ (2018)
- CR and conductive heating balance radiative cooling: $\mathcal{H}_{cr} + \mathcal{H}_{th} \approx \mathcal{C}_{rad}$: modest mass deposition rate of 1 M_{\odot} yr⁻¹
- simulated CR heating rate matches 1D steady state model

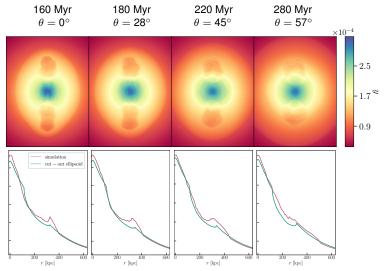


Modelling the major outburst in MS 0735

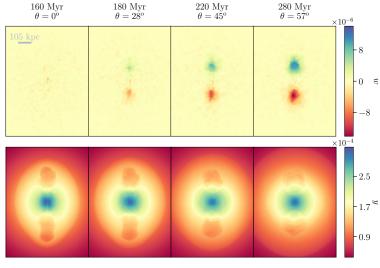


SZ effect of bubbles – profiles

different bubble fillings: thermal vs. relativistic content



Ehlert, CP+ (in prep.) analytical model vs. simulation



SZ effect of bubbles: inclination-distance degeneracy

Ehlert, CP+ (in prep.)

Kinetic vs. thermal SZ effect

AIP

Conclusions on cosmic rays in clusters

CR hydrodynamics:

- novel theory of CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics
- moment expansion similar to radiation hydrodynamics
- Galilean invariant, energy and momentum conserving

Conclusions on cosmic rays in clusters

CR hydrodynamics:

- novel theory of CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics
- moment expansion similar to radiation hydrodynamics
- Galilean invariant, energy and momentum conserving

AGN feedback and CRs:

- steady-state CR heating: self-regulated cooling-heating loop
- MHD simulations of AGN jets: CR heating can solve the "cooling flow problem" in galaxy clusters

Conclusions on cosmic rays in clusters

CR hydrodynamics:

- novel theory of CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics
- moment expansion similar to radiation hydrodynamics
- Galilean invariant, energy and momentum conserving

AGN feedback and CRs:

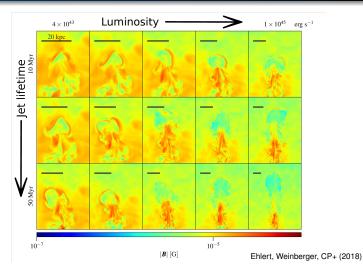
- steady-state CR heating: self-regulated cooling-heating loop
- MHD simulations of AGN jets: CR heating can solve the "cooling flow problem" in galaxy clusters
- simulating SZE of bubbles: determine relativistic filling but: pressure enhancements, jet inclinations, kSZ

CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtioN

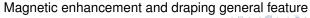
Literature for the talk

Cosmic ray transport:

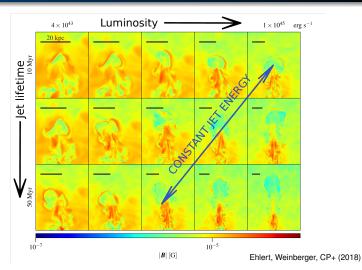
 Thomas, Pfrommer, Cosmic-ray hydrodynamics: Alfvén-wave regulated transport of cosmic rays, 2018.

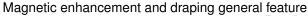

Cosmic ray feedback in galaxy clusters:

- Jacob & Pfrommer, Cosmic ray heating in cool core clusters I: diversity of steady state solutions, 2017a, MNRAS.
- Jacob & Pfrommer, Cosmic ray heating in cool core clusters II: self-regulation cycle and non-thermal emission, 2017b, MNRAS.
- Ehlert, Weinberger, Pfrommer, Pakmor, Springel, Simulations of the dynamics of magnetised jets and cosmic rays in galaxy clusters, 2018, MNRAS.

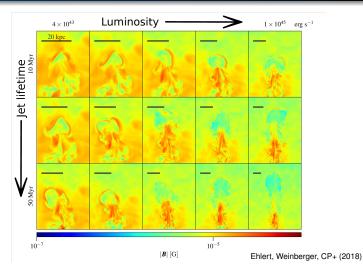


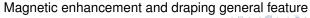
Magnetic field structure



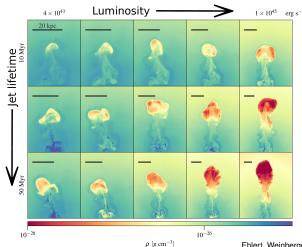


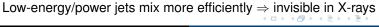
Magnetic field structure



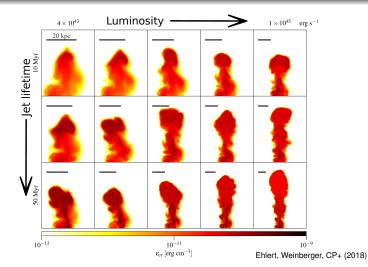


Magnetic field structure

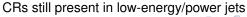




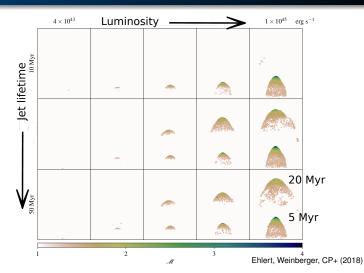
Jet morphology



Ehlert, Weinberger, CP+ (2018)



CR distribution



Jet Mach numbers

