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Cosmological simulations Introduction
Simulated physics
Cosmic rays in galaxy clusters

Collisionless shocks in supernova remnants

Astrophysical collisionless shocks can:
@ accelerate particles (electrons and ions)
@ amplify magnetic fields (or generate them from scratch)
@ exchange energy between electrons and ions

17hg2m

SN 1006 X-rays (CXC/Hughes) G347.3 HESS TeV Tycho X-rays (CXC)

(Aharonian et al. 2006) /\<I
HITS
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Cosmic rays in galaxy clusters

Collisionless shocks

Astrophysical collisionless shocks can:
@ accelerate particles (electrons and ions)
@ amplify magnetic fields (or generate them from scratch)
@ exchange energy between electrons and ions

Particle-in-cell simulations of unmagnetized, relativistic pair shocks that are
mediated by the Weibel instability (spitkovsky 2008)

7dN(y)/dy

1 10 100 1000

1 10 l(I)U 1000 /{J
14 N
magnetic energy density (Spitkovsky 2008) post-shock Maxwellian and accelerated CR power-law NHITS
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Cosmological simulations Introduction
Simulated physics
Cosmic rays in galaxy clusters

- Shocks in galaxy clusters

-

\ : . Sy . LB
1E 0657-56 (“Bullet cluster”)
(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: (radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)

NASA/STScl; Magellan/U.Arizona/D.Clowe et al.; Lensing:
NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)
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\ Giant radio halo in the Coma cluster

Coma Cluster
0.5-2.0keV

0.5 Degree

thermal X-ray emission radio synchrotron emission

(Snowden/MPE/ROSAT) (Deiss/Effelsberg)
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Simulated physics
Cosmic rays in galaxy clusters

How universal is diffusive shock acceleration?

What can galaxy clusters teach us about shock acceleration and beyond?

Cosmological structure formation shock physics complementary to
interplanetary and SNR shocks:

@ probing unique regions of shock acceleration parameter space:
— Mach numbers M ~ 2...10 with ‘infinitely’ extended (Mpc)
and lasting (Gyr) shocks (observationally accessible @ z = 0)
— plasma-g factors of 3 ~ 10%...10°

@ consistent picture of non-thermal processes in galaxy clusters
(radio, soft/hard X-ray, v-ray emission)
— illuminating the process of structure formation
— history of individual clusters: cluster archeology
— calibrating thermal cluster obervables: cluster cosmology

HITS
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Radiative simulations — flowchart

Cluster observables: Physical processes in clusters:

Sunyaev-
Zeldovich effect

X-ray
emission

galaxy
spectra

loss processes
gain processes

observables N
C.P,, EnBlin, Springel (2008) populations HITS
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Cluster observables: Physical processes in clusters:

Sunyaev-
Zeldovich effect

loss processes
gain processes

observables
C.P,, EnBlin, Springel (2008) populations HITS
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Radiative simulations with extended CR physics

Cluster observables: Physical processes in clusters:

Sunyaev-
Zeldovich effect
X-ray
emission
galaxy
spectra

loss processes
gain processes

observables
C.P,, EnBlin, Springel (2008) populations HITS
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Cosmological simulations Introduction
Slmulated physics

c rays in

Radiative simulations with extended CR phyS|cs

Cluster observables: Physical processes in clusters:

Sunyaev-
Zeldovich effect
X-ray
emission
galaxy
spectra
radio
synchrotron
gamma-ray
emission
loss processes
gain processes

observables )
C.P,, EnBlin, Springel (2008) populations HITS
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Hadronic cosmic ray proton interaction

LA

=~
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Hadronic cosmic ray proton interaction
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Cosmological simulations Introduction
Simulated physics
Cosmic rays in galaxy clusters

Our philosophy and description

An accurate description of CRs should follow the evolution of
the spectral energy distribution of CRs as a function of time and
space, and keep track of their dynamical, non-linear coupling
with the hydrodynamics.

We seek a compromise between
@ capturing as many physical properties as possible
@ requiring as little computational resources as necessary

Assumptions:
@ protons dominate the CR population
@ a momentum power-law is a typical spectrum
@ CR energy & particle number conservation /:4H|Ts
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CR spectral description

q
_ mpc? ~
p=P/myc Per = =5 dp f(p) 5(P) p
C mpc? a—2 33—«
EnBlin, C.P., Springel, Jubelgas (2007) a i Bﬁ (T7 T) /’\4
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Cosmological cluster simulation: gas density
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Mass weighted temperature
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Mach number distribution weighted by egjss
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Cosmological simulations Introduction
Simulated physics
Cosmic rays in galaxy clusters

Diffusive shock acceleration — Fermi 1 mechanism (1)

Spectral index depends on the Mach number of the shock,
M = Ughock/Cs:

A
log f

strong shock

keV 10 GeV log p

HITS
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Cosmological simulations Introduction
Simulated physics
Cosmic rays in galaxy clusters

Diffusive shock acceleration — Efficiency (2)

CR proton energy injection efficiency, (inj = ecr/<diss:

Mach number M
oo 3 11/3
1.000F \ \/E ‘/‘_/ ‘@
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Mach number distribution weighted by egjss
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Mach number distribution weighted by ecr jn;
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CR pressure Pcr
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Cosmological simulations

Cosmic rays in galaxy clusters

Relative CR pressure Pcr/ Piotal
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Outline

Q Non-thermal emission
@ Overview
@ Radio emission
@ Gamma-ray emission
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Overview

Non-thermal emission Radio emission
Gamma-ray emission

Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Energy sources:

e

Plasma turbulent cascade
processes: & plasma waves

/ ]HITS
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Non-thermal emission a

Multi messenger approach for non- thermal processes

Relativistic populations and radiative processes in clusters:

Energy sources:

Plasma turbulent cascade
processes: & plasma waves
y / ) =
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Relativistic
particle pop.:
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Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Energy sources: -

Plasma turbulent cascade
processes: & plasma waves
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Relativistic
particle pop.:

Observational
diagnostics:

IC: hard X-ray &
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Relativistic populations and radiative processes in clusters:

Energy sources:

Plasma turbulent cascade
processes: & plasma waves

Relativistic
particle pop.:

Observational
diagnostics:

IC: hard X-ray &
gamma-ray emission

gamma-ray

radio synchrotron ma:
emission

emission
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Overview
Non-thermal emission Radio emission
Gamma-ray emission

Cluster radio emission by hadronically produced CRe

-15 .

S, secondary [ MJIy arcmi

-15 -10 -5 0 5 10 15
x[h*Mpc]
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Overview
Non-thermal emission Radio emission

Gamma-ray emission
Cosmic web: Mach number
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Overview
Non-thermal emission Radio emission
Gamma-ray emission

Radio gischt: primary CRe (150 MHz)
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Overview
Non-thermal emission Radio emission
Gamma-ray emission

Radio gischt + central hadronic halo = giant radio halo
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Overview
Non-thermal emission Radio emission
Gamma-ray emission

Which one is the simulation/observation of A22567?

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
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Overview
Non-thermal emission Radio emission
Gamma-ray emission

Observation — simulation of A2256

Clarke & EnBlin (2006) C.P. & Battaglia (in prep.)

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
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Overview
Non-thermal emission Radio emission
Gamma-ray emission

Universal CR spectrum in clusters (Pinzke & C.P. 2010)

10

= Fermi: oap~25

O IACT: ay~22
0.1 p

< f(p) p*>

0.01

0.001 A | A | A | A | A | A | A
10" 107 10° 10° 10* 10° 10° 10"
p

Normalized CR spectrum shows universal concave shape — governed by
hierarchical structure formation and the implied distribution of Mach numbers~__;
that a fluid element had to pass through in cosmic history. HITS
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Overview

Non-thermal emission Radio emission
Gamma-ray emission

CR proton and ~-ray spectrum (pinzke & C.P. 2010)
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Overview
Non-thermal emission Radio emission
Gamma-ray emission

Hadronic v-ray emission, E, > 100 GeV
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Overview
Non-thermal emission Radio emission
Gamma-ray emission

Inverse Compton emission, Eic > 100 GeV
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Overview
Non-thermal emission Radio emission
Gamma-ray emission

Total y-ray emission, E, > 100 GeV
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Overview
Non-thermal emission Radio emission
Gamma-ray emission

An analytic model for the cluster y-ray emission

Comparison: simulation vs. analytic model, My; ~ ( 10", 10‘5) Mo
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Overview
Non-thermal emission Radio emission
Gamma-ray emission

Gamma-ray scaling relations
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(HIFLUGCS) — predictions for Fermi and IACT's
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Overview
Non-thermal emission Radio emission
Gamma-ray emission

~-ray limits and hadronic predictions (Ackermann et al
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Overview
Non-thermal emission Radio emission
Gamma-ray emission

Minimum ~-ray flux in the hadronic model

Jic(B)/ jic(Beme) 3 Tl

LLELARALL B B AL e R

7 B Bawe)
Il Il

10
BluG]

Synchrotron emissivity of steady
state CRes is independent of the
magnetic field for B > Bgug!

HITS
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Overview
Non-thermal emission Radio emission
Gamma-ray emission

Minimum ~-ray flux in the hadronic model

Synchrotron luminosity:

L b

E Jic(B)/ jic(Bews)

8%1,,—}—1)/2

€cMB +€B

— Au/danRngas (eB > ecmB)

Lu = Az/ danRngas

For j,(B) :
=1 -

v, =115 7 . .
o T w-im ] -ray luminosity:
0 @) Bove) L a=145 y-ray y
10°.7 L L
0.1 1.0 10.0
BluG] L»y = Afy/danRngas

Synchrotron emissivity of steady
state CRes is independent of the
magnetic field for B > Bgyg! Fymin = AL

— minimum ~y-ray flux:

HITS
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Overview
Non-thermal emission Radio emission
Gamma-ray emission

MAGIC observations of Perseus
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Overview
Non-thermal emission Radio emission
Gamma-ray emission

Upper limit on the TeV ~-ray emission from Perseus
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The MAGIC Collaboration: Aleksic et al. 2010 HITS
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Overview
Non-thermal emission Radio emission
Gamma-ray emission

Results from the Perseus observation by MAGIC

@ assuming f oc p~* with a = 2.1, Pcr < Py:
(Pcr) < 0.02(Py,) — most stringent constraint on CR pressure!

@ upper limits consistent with cosmological simulations:
Fupper limits (100 GeV) = 2 Fgim (optimistic model)

HITS
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Overview
Non-thermal emission Radio emission
Gamma-ray emission

Results from the Perseus observation by MAGIC

@ assuming f oc p~* with a = 2.1, Pcr < Py:
(Pcr) < 0.02(Py,) — most stringent constraint on CR pressure!

@ upper limits consistent with cosmological simulations:
Fupper limits (100 GeV) = 2 Fgim (optimistic model)

@ simulation modeling of pressure constraint yields
(Pcr)/{Pn) < 0.04(0.08) for the core (entire cluster)

@ resolving the apparent discrepancy:

e concave curvature ‘hides’ CR pressure at GeV energies
o relative CR pressure increases towards the outer parts
(adiabatic compression and softer equation of state of CRs)

HITS
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Overview
Non-thermal emission Radio emission
Gamma-ray emission

Conclusions on non-thermal emission from clusters

Exploring the memory of structure formation

@ primary, shock-accelerated CR electrons resemble current
accretion and merging shock waves

@ CR protons/hadronically produced CR electrons trace the time
integrated non-equilibrium activities of clusters that is modulated
by the recent dynamical activities

HITS
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Overview
Non-thermal emission Radio emission
Gamma-ray emission

Conclusions on non-thermal emission from clusters

Exploring the memory of structure formation

@ primary, shock-accelerated CR electrons resemble current
accretion and merging shock waves

@ CR protons/hadronically produced CR electrons trace the time
integrated non-equilibrium activities of clusters that is modulated
by the recent dynamical activities

How can we read out this information about non-thermal populations?
— new era of multi-frequency experiments, e.g.:

@ LOFAR, GMRT, MWA, LWA, SKA: interferometric array of radio
telescopes at low frequencies (v ~ (15 — 240) MHz)

@ NuSTAR: future hard X-ray satellites (E ~ (1 — 100) keV)
@ Fermi ~-ray space telescope (E ~ (0.1 — 300) GeV)
@ Imaging air Cerenkov telescopes (E ~ (0.1 — 100) TeV) /@Hns
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Observations and models
CR pumping and streaming
Cosmic ray transport Radio and gamma-ray bimodality

Outline

e Cosmic ray transport
@ Observations and models
@ CR pumping and streaming
@ Radio and gamma-ray bimodality

/\<I
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Observations and models
CR pumping and streaming
Cosmic ray transport Radio and gamma-ray bimodality

Radio halo theory — (i) hadronic model

pcr +p — 1t — e+
strength:

@ all required ingredients available:
shocks to inject CRp, gas protons as targets, magnetic fields

@ predicted luminosities and morphologies as observed without
tuning

@ power-law spectra as observed

weakness:
@ all clusters should have radio halos

@ does not explain all reported spectral features

° ... b4
HITS
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Radio halo theory — (i) hadronic model

pcr +p — 1t — e+
strength:

@ all required ingredients available:
shocks to inject CRp, gas protons as targets, magnetic fields

@ predicted luminosities and morphologies as observed without
tuning

@ power-law spectra as observed

weakness:
Q allclusters should have radio halos

@ does not explain all reported spectral features

° ... b4
HITS
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Observations and models
(¢
Ra

Cosmic ray transport

100

Flux density (miJy)

L
1 10
Frequency (GHz)

Liang et al. (2000): SZ-corrected %
HITS
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Observations and models
CR pumping and streaming

Cosmic ray transport Radio and gamma-ray bimodality
Radio luminosity - X-ray luminosity
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Observations and models
CR pumping and streaming

Cosmic ray transport Radio and gamma-ray bimodality
Radio luminosity - X-ray luminosity
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Observations and models
CR pumping and streaming

Cosmic ray transport Radio and gamma-ray bimodality
Radio luminosity - X-ray luminosity
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Observations and models
CR pumping and streaming

Cosmic ray transport Radio and gamma-ray bimodality
Radio luminosity - central entropy
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Observations and models
CR pumping and streaming

Cosmic ray transport Radio and gamma-ray bimodality
Radio luminosity - central entropy
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Observations and models
CR pumping and streaming

Cosmic ray transport Radio and gamma-ray bimodality
Radio luminosity - central entropy
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Observations and models
CR pumping and streaming

Cosmic ray transport Radio and gamma-ray bimodality
Radio luminosity - central entropy
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Observations and models
CR pumping and streaming

Cosmic ray transport Radio and gamma-ray bimodality
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Observations and models
CR pumping and streaming

Cosmic ray transport Radio and gamma-ray bimodality
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Observations and models
CR pumping and streaming
Cosmic ray transport Radio and gamma-ray bimodality

Radio halo theory — (ii) re-acceleration model

strength:

@ all required ingredients available:
radio galaxies & relics to inject CRe, plasma waves to re-accelerate, ...

@ reported complex radio spectra emerge naturally

@ clusters without halos « less turbulent

weakness:
@ Fermi Il acceleration is inefficient — CRe cool rapidly
@ observed power-law spectra require fine tuning
o ...

HITS
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Radio halo theory — (ii) re-acceleration model

strength:

@ all required ingredients available:
radio galaxies & relics to inject CRe, plasma waves to re-accelerate, ...

@ reported complex radio spectra emerge naturally

@ clusters without halos « less turbulent

weakness:
@ Fermi Il acceleration is inefficient — GRe-ceetrapidly
@ observed power-law spectra require fine tuning
o ...
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Electron cooling times
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Electron cooling times

104; L B L B AL B B AL B R AL B R AL RP G RRALY
£ synchrotrons IC: s

1037 1nG ’ ~
5
o ]
o 10
L
w
I ]
8 10: = . -
© E AN > E|
£ b ' E
1] E 3
3 [ Coulomb: ]
c [ nefem™] = 1
o -1l e
g 10 104
Q@ £ E
[ L

10 3

102V Al il il il il il /\<I

-5 -4 -3 -2 -1 0 1 2
10 10 10 10 10 10 10 10 .

kinetic electron energf [GeV]

ristoph Pfromm Cosmic ray tr



Observations and models
CR pumping and streaming
Cosmic ray transport Radio and gamma-ray bimodality

Cosmic ray transport — magnetic flux tube with CRs

T |
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Cosmic ray advection
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Adiabatic expansion and compression
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Cosmic ray streaming
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Expanded CRs
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Turbulent pumping

NHirs

ristoph Pfrommer Cosmic ray transpor




Observations and models
on-thermal emission CR pumping and streaming
Cosmic ray transport Radio and gamma-ray bimodality

Turbulent pumping
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Turbulent-to-streaming ratio
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Are CRs confined to magnetic flux tubes?
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Escape via diffusion: energy dependence
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CR transport theory

CR continuity equation in the absence of sources and sinks:

(234_6.(@@):0 UV = Vyd + Vgi + Vst
Vo

Vst = —Ustt=
Vo
1o

Vg = —Kdg — VO
0

Vg = _Ktuﬂﬁg Ky = LtuUtu
e n 3
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CR profile due to advection
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CR density profile

CR density profile
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CR density at fixed particle energy

CR normalisation profile

C(r)

T = g

/\<I
HITS



Observations and models
CR pumping and streaming
Cosmic ray transport

Radio and gamma-ray bimodality
Gamma-ray emission profile

pcr +p — 70 — 2y

gamma ray emissivity
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Gamma-ray luminosity PR + p — 10 — 24
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~-ray limits and hadronic predictions (Ackermann et al

F> 0.1 GeV ( ph cm2s~) F> 0.1 GeV ( ph emr?s-)

F> 0.1 GeV ( phenr2st)
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Radio emission profile Por +p — 7+ — e* — radio

radio emissivity
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Radio luminosity

Yu =

tu
Ust

L,(7.)/L,(10)
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pcr + p — t — et — radio

radio luminosity
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Conclusions

@ cosmological simulations predict universal CR spectrum and
distribution (ignoring active CR transport)
— Fermi limits consistent with simulations that use most
optimistic assumptions of CR acceleration and transport
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Conclusions

@ cosmological simulations predict universal CR spectrum and
distribution (ignoring active CR transport)
— Fermi limits consistent with simulations that use most
optimistic assumptions of CR acceleration and transport

@ streaming & diffusion produce spatially flat CR profiles
advection produces centrally enhanced CR profiles
— profile depends on advection-to-streaming-velocity ratio
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Conclusions

@ cosmological simulations predict universal CR spectrum and
distribution (ignoring active CR transport)
— Fermi limits consistent with simulations that use most
optimistic assumptions of CR acceleration and transport

@ streaming & diffusion produce spatially flat CR profiles
advection produces centrally enhanced CR profiles
— profile depends on advection-to-streaming-velocity ratio

@ turbulent velocity ~ sound speed — cluster merger
CR streaming velocity ~ sound speed < plasma physics
— peaked/flat CR profiles in merging/relaxed clusters
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Conclusions

@ cosmological simulations predict universal CR spectrum and
distribution (ignoring active CR transport)
— Fermi limits consistent with simulations that use most
optimistic assumptions of CR acceleration and transport

@ streaming & diffusion produce spatially flat CR profiles
advection produces centrally enhanced CR profiles
— profile depends on advection-to-streaming-velocity ratio

@ turbulent velocity ~ sound speed — cluster merger
CR streaming velocity ~ sound speed « plasma physics
— peaked/flat CR profiles in merging/relaxed clusters

@ energy dependence of v — CR & radio spectral variations
— outstreaming CR: dying halo « decaying turbulence

— bimodality of cluster radio halos & gamma-ray emission! MH.TS
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