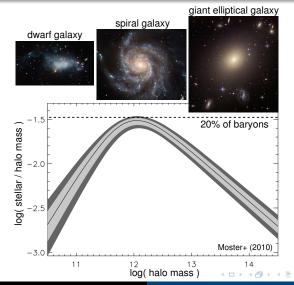
Cosmic ray feedback in galaxy formation

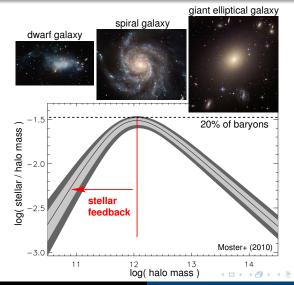
Christoph Pfrommer¹

in collaboration with

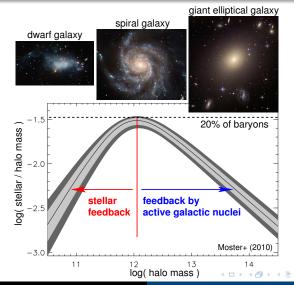
PhD students: Jlassi, ¹ Tevlin, ¹ Weber, ¹ Chiu, ² Sike²
Postdocs: Berlok, ³ Girichidis, ⁴ Kwak, ¹ Lemmerz, ¹ Ley, ¹ Meenakshi, ¹
Perrone, ¹ Shalaby, ⁵ **Thomas**, ¹ Werhahn, ⁶ Whittingham ¹
Faculty: Pakmor, ⁶ Puchwein, ¹ Weinberger, ¹ Ruszkowski, ² Springel, ⁶ Enßlin ⁶


¹AIP, ²U of Michigan, ³NBI, ⁴U of Heidelberg, ⁵Perimeter Institute, ⁶MPA

The Midwest Magnetic Fields Workshop 2025, Madison, July 2025



Puzzles in galaxy formation



Puzzles in galaxy formation

Puzzles in galaxy formation

Stellar feedback

super wind in M82

- thermal pressure provided by supernovae or active galactic nuclei?
- radiation pressure and photoionization by massive stars and quasars?
- pressure of cosmic rays (CRs) that are accelerated at supernova shocks?

Review on cosmic ray feedback

Astron Astrophys Rev (2023) 31:4 https://doi.org/10.1007/s00159-023-00149-2

REVIEW ARTICLE

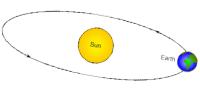
Cosmic ray feedback in galaxies and galaxy clusters

A pedagogical introduction and a topical review of the acceleration, transport, observables, and dynamical impact of cosmic rays

GLOBAL

Mateusz Ruszkowski^{1,3} · Christoph Pfrommer²

соѕмо



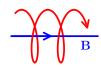
Cosmic ray transport: an extreme multi-scale problem

Milky Way-like galaxy:

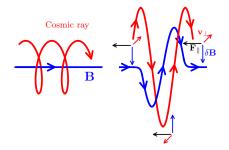
$$r_{\rm gal} \sim 10^4~{\rm pc}$$

gyro-orbit of GeV CR:

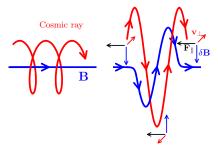
$$r_{
m cr} = rac{p_{\perp}}{e\,B_{
m \mu G}} \sim 10^{-6}~{
m pc} \sim rac{1}{4}\,{
m AU}$$


 \Rightarrow need to develop a fluid theory for a collisionless, non-Maxwellian component!

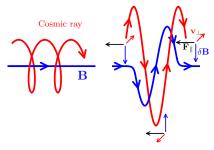
Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2019)



sketch: Jacob & CP

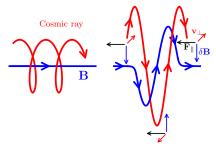


sketch: Jacob & CP



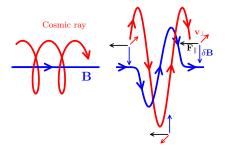
sketch: Jacob & CP

• electric fields vanish in the Alfvén wave frame: $abla imes {m E} = -rac{1}{c} rac{\partial {m B}}{\partial t}$



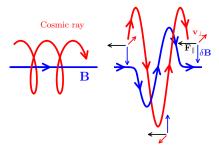
sketch: Jacob & CP

- ullet electric fields vanish in the Alfvén wave frame: $abla imes {m E} = -rac{1}{c}rac{\partial {m B}}{\partial t}$
- ullet work out **Lorentz forces on CRs** in wave frame: ${m F_L} = q {{m v} imes {m B} \over {m C}}$



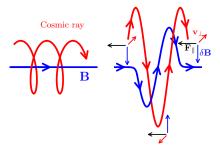
sketch: Jacob & CP

- ullet electric fields vanish in the Alfvén wave frame: $abla imes {m E} = -rac{1}{c}rac{\partial {m B}}{\partial t}$
- work out **Lorentz forces on CRs** in wave frame: $F_L = q \frac{v \times B}{c}$
- Lorentz force depends on relative phase of CR gyro orbit and wave:
 - ullet sketch: decelerating Lorentz force along CR orbit $o p_{\parallel}$ decreases
 - ullet phase shift by 180°: accelerating Lorentz force ullet p_{\parallel} increases



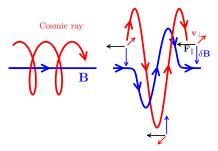
sketch: Jacob & CP

 only electric fields can provide work on charged particles and change their energy



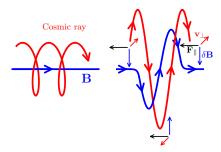
sketch: Jacob & CP

- only electric fields can provide work on charged particles and change their energy
- in Alfvén wave frame, where E=0, CR energy is conserved: $p^2=p_{\parallel}^2+p_{\perp}^2={\rm const.}$ so that decreasing p_{\parallel} causes p_{\perp} to increase



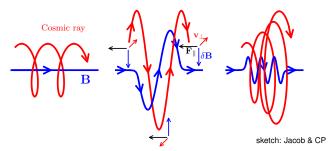
sketch: Jacob & CP

- only electric fields can provide work on charged particles and change their energy
- in Alfvén wave frame, where E=0, CR energy is conserved: $p^2=p_{\parallel}^2+p_{\perp}^2={\rm const.}$ so that decreasing p_{\parallel} causes p_{\perp} to increase
- ullet this increases the CR pitch angle cosine $\mu = \cos heta = rac{m{B}}{|m{B}|} \cdot rac{m{p}}{|m{p}|}$


sketch: Jacob & CP

 CRs resonantly interact with Alfvén waves so that the wavelength equals the gyro-radius:

$$L_{\parallel}=r_{\rm g}=rac{p_{\perp}c}{qB}$$


sketch: Jacob & CP

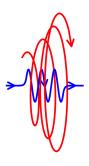
 CRs resonantly interact with Alfvén waves so that the wavelength equals the gyro-radius:

$$L_{\parallel}=r_{\mathrm{g}}=rac{p_{\perp}c}{qB}$$

• gyro resonance: $\omega - k_{\parallel} v_{\parallel} = n\Omega = n \frac{qB}{\gamma m_{\parallel} c}$ Doppler-shifted MHD frequency is a multiple n of the CR gyrofrequency

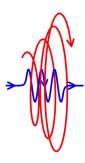
• CRs resonantly interact with Alfvén waves so that the wavelength equals the gyro-radius:

$$L_{\parallel}=r_{\mathrm{g}}=rac{p_{\perp}c}{qB}$$


• gyro resonance: $\omega - k_{\parallel} v_{\parallel} = n\Omega = n \frac{qB}{\gamma m_{\parallel} c}$ Doppler-shifted MHD frequency is a multiple n of the CR gyrofrequency

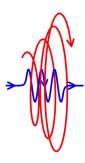
Cosmic ray streaming and diffusion

- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_a
 - wave damping: transfer of CR energy and momentum to the thermal gas



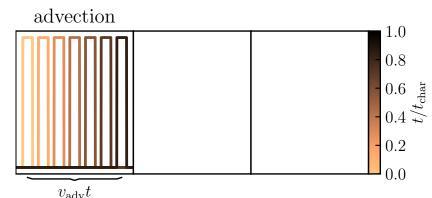
Cosmic ray streaming and diffusion

- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_a
 - wave damping: transfer of CR energy and momentum to the thermal gas

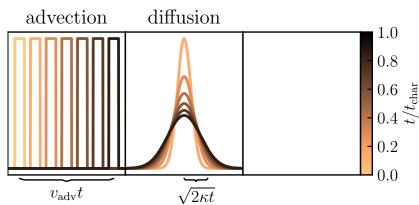

→ CRs exert pressure on thermal gas via scattering on Alfvén waves

Cosmic ray streaming and diffusion

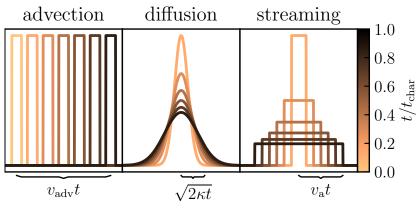
- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_a
 - wave damping: transfer of CR energy and momentum to the thermal gas


→ CRs exert pressure on thermal gas via scattering on Alfvén waves

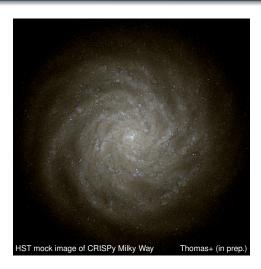
weak wave damping: strong coupling \to CR stream with waves strong wave damping: less waves to scatter \to CR diffusion prevails


Modes of CR propagation

Modes of CR propagation

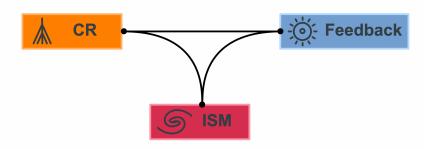


Thomas, CP, Enßlin (2020)


Modes of CR propagation

Thomas, CP, Enßlin (2020)

Cosmic ray transport in galaxies


- CR transport in galaxies demands modeling non-linear Landau damping (in warm/hot phase) and ion-neutral damping (in disk)
- this requires resolving the multi-phase structure of the ISM
- development of CRISP framework (Cosmic Rays and InterStellar Physics, Thomas+ 2024)

CRISP framework

Cosmic Rays and InterStellar Physics

CRISP framework

Cosmic Rays and InterStellar Physics

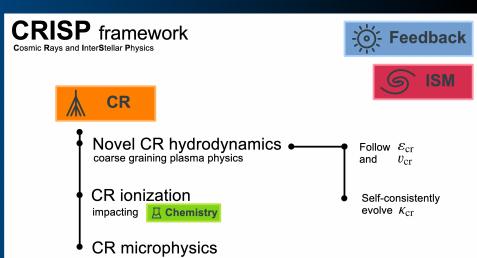
Full H – H₂ – He chemistry sets ionization degree

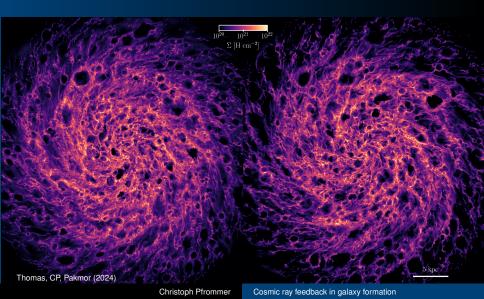
First ionization stages of C – O – Si low temperature cooling

Photoelectric heating by dust

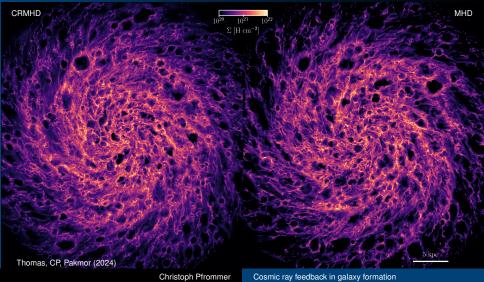
CRISP framework

Cosmic Rays and InterStellar Physics



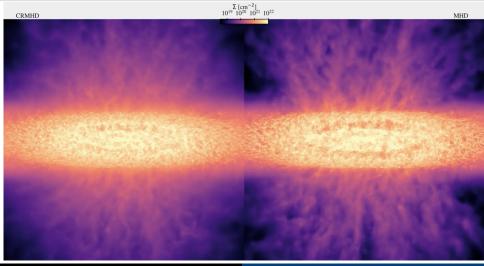

Improved SNe treatment (manifestly isotropic) and stellar winds

FUV NUV OPT radiation fields (reverse ray tracing)


absorbed by dust ─ impacting ☐ Chemistry

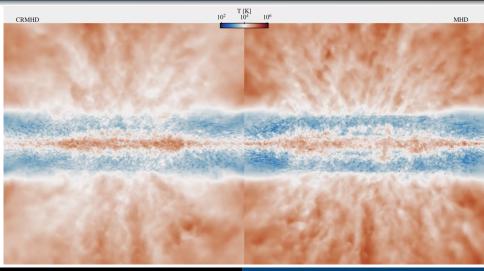
Metal enrichment

Cosmic rays barely affect the ISM because ion-neutral damping erases Alfvén waves


Multi-phase ISM

Cosmic ray driven winds

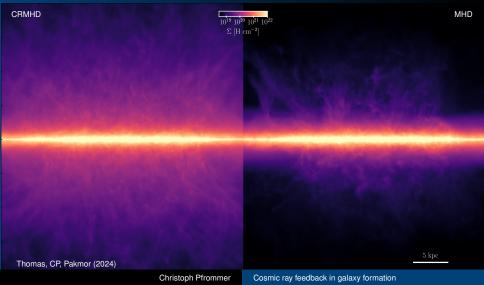
Mass and energy loading factors


Simulated Milky Way: surface density

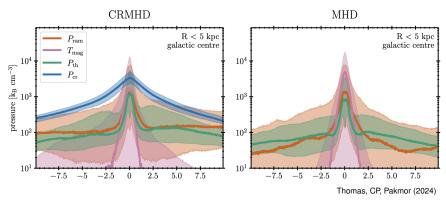
Cosmic rays drive galactic winds, ram pressure propells mainly galactic fountains

Simulated Milky Way: temperature

Galactic winds without cosmic rays are much hotter


Multi-phase ISM

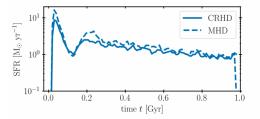
Cosmic ray driven winds


Mass and energy loading factors

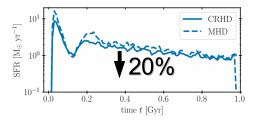
Multi-phase ISM modeling

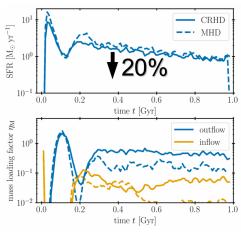
Cosmic rays make galactic winds much denser

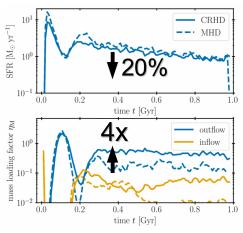
Cosmic ray driven wind: mechanism

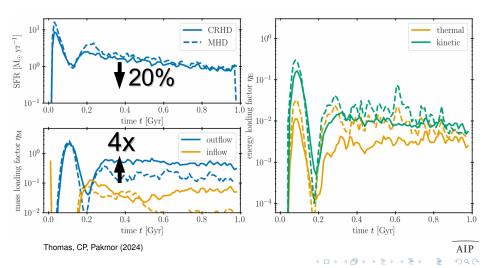


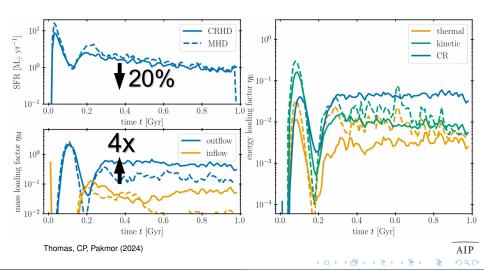
 CR pressure gradient dominates over thermal and ram pressure gradient and drives outflow:

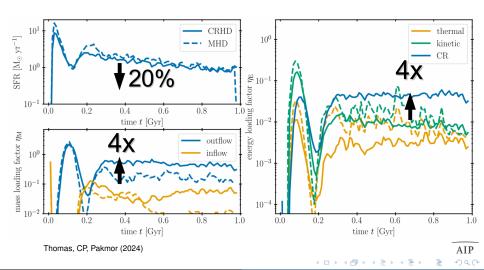

$$|\mathbf{\nabla} P_{\mathsf{cr}} + \mathbf{\nabla} P_{\mathsf{th}}| >
ho |\mathbf{\nabla} \Phi|$$


AIP









Conclusions for cosmic ray physics in galaxies

CR hydrodynamics:

- novel theory of CR transport mediated by Alfvén waves developed and coupled to magneto-hydrodynamics
- self-generated diffusion coefficient emerges from CR-wave interactions

Conclusions for cosmic ray physics in galaxies

CR hydrodynamics:

- novel theory of CR transport mediated by Alfvén waves developed and coupled to magneto-hydrodynamics
- self-generated diffusion coefficient emerges from CR-wave interactions

CR feedback in galaxy formation:

- CR feedback barely impacts ISM or star formation because of strong ion-neutral damping in disk, which weakens CR coupling
- CR feedback drives powerful galactic winds
- CR feedback increases mass and energy loading factors by 4

Multi-phase ISM
Cosmic ray driven winds
Mass and energy loading factors

PICOGAL: From Flasma Kinetics to COsmological GALaxy Formation

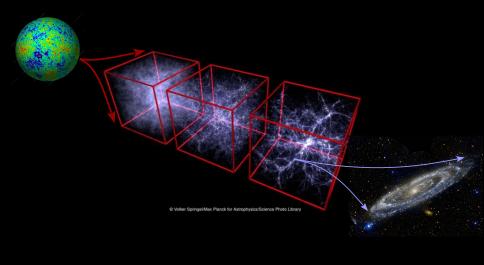
Literature for the talk

CR hydrodynamics and CR transport:

- Pfrommer, Pakmor, Schaal, Simpson, Springel, Simulating cosmic ray physics on a moving mesh, 2017, MNRAS, 465, 4500.
- Thomas & Pfrommer, Cosmic-ray hydrodynamics: Alfvén-wave regulated transport of cosmic rays, 2019, MNRAS, 485, 2977.
- Thomas, Pfrommer, Pakmor, A finite volume method for two-moment cosmic-ray hydrodynamics on a moving mesh, 2021, MNRAS, 503, 2242.
- Thomas, Pfrommer, Enßlin, Probing Cosmic Ray Transport with Radio Synchrotron Harps in the Galactic Center, 2020, ApJL, 890, L18.

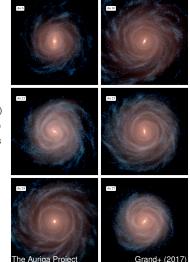
CR feedback in galaxy formation:

- Ruszkowski, Pfrommer, Cosmic ray feedback in galaxies and galaxy clusters, 2023, Astron Astrophys Rev, 31, 4.
- Thomas, Pfrommer, Pakmor, Cosmic ray-driven galactic winds: transport modes of cosmic rays and Alfvén-wave dark regions, 2023, MNRAS, 521, 3023.
- Thomas, Pfrommer, Pakmor, Why are thermally- and cosmic ray-driven galactic winds fundamentally different? 2024, A&A, submitted.


Multi-phase ISM
Cosmic ray driven winds
Mass and energy loading factors

Additional slides

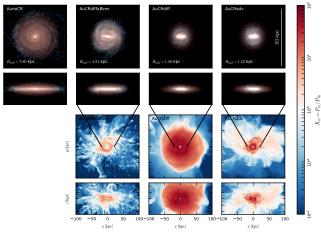
Cosmological galaxy formation


Cosmic rays in cosmological galaxy simulations

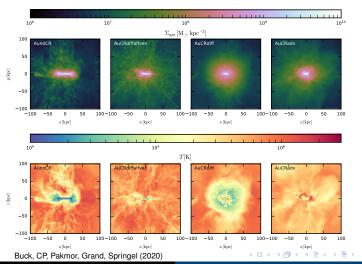
The galaxy formation model

- primordial and metal line cooling
- sub-resolution model for star formation (Springel+ 03)
- mass and metal return from stars to ISM
- cold dense gas stabilized by pressurized ISM
- thermal and kinetic energy from supernovae modeled by isotropic wind – launched outside of SF region
- black hole seeding and accretion model (Springel+ 05)
- thermal feedback from AGN in radio and guasar mode
- uniform magnetic field of 10^{-10} G seeded at z = 128

Simulation suite (Buck, CP+ 2020)


- \bullet 2 galaxies, baryons with 5 \times 10 4 M_{\odot} \sim 5 \times 10 6 resolution elements in halo, 2 \times 10 6 star particles
- 4 models with different CR physics for each galaxy:
 - no CRs
 - CR advection
 - + CR anisotropic diffusion
 - + CR Alfvén wave cooling

Cosmic rays in cosmological galaxy simulations


Auriga MHD models: CR transport changes disk sizes

Cosmic rays in cosmological galaxy simulations

Auriga MHD models: CR transport modifies the circum-galactic medium

