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Stellar feedback

super wind in M82
NASA/JPL-Caltech/STScI/CXC/UofA

thermal pressure provided by
supernovae or active galactic
nuclei?

radiation pressure and
photoionization by massive
stars and quasars?

pressure of cosmic rays (CRs)
that are accelerated at
supernova shocks?
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Cosmic ray transport: an extreme multi-scale problem

Milky Way-like galaxy:

rgal ∼ 104 pc

gyro-orbit of GeV CR:

rcr =
p⊥

e BµG
∼ 10−6 pc ∼ 1

4
AU

⇒ need to develop a fluid theory for a collisionless,
non-Maxwellian component!
Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2019)
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electric fields vanish in the Alfvén wave frame: ∇× E = − 1
c

∂B
∂t

work out Lorentz forces on CRs in wave frame: FL = q v × B
c

Lorentz force depends on relative phase of CR gyro orbit and wave:

sketch: decelerating Lorentz force along CR orbit → p∥ decreases
phase shift by 180◦: accelerating Lorentz force → p∥ increases
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only electric fields can provide work on charged particles and
change their energy

in Alfvén wave frame, where E = 0, CR energy is conserved:
p2 = p2

∥ + p2
⊥ = const. so that decreasing p∥ causes p⊥ to increase

this increases the CR pitch angle cosine µ = cos θ = B
|B| ·

p
|p|
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CRs resonantly interact with Alfvén waves so that the wavelength
equals the gyro-radius:

L∥ = rg =
p⊥c
qB

gyro resonance: ω − k∥v∥ = nΩ = n qB
γmic

Doppler-shifted MHD frequency is a multiple n of the CR gyrofrequency
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Cosmic ray streaming and diffusion

CR streaming instability: Kulsrud & Pearce 1969

if vcr > va, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

scattering off of this wave field limits
the (GeV) CRs’ bulk speed ∼ va

wave damping: transfer of CR energy
and momentum to the thermal gas

→ CRs exert pressure on thermal gas via scattering on Alfvén waves

weak wave damping: strong coupling → CR stream with waves
strong wave damping: less waves to scatter → CR diffusion prevails
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Cosmic ray transport in galaxies

HST mock image of CRISPy Milky Way Thomas+ (in prep.)

CR transport in galaxies
demands modeling
non-linear Landau damping
(in warm/hot phase) and
ion-neutral damping (in disk)

this requires resolving the
multi-phase structure of the
ISM

development of CRISP
framework (Cosmic Rays
and InterStellar Physics,
Thomas+ 2024)
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Simulated Milky Way: surface density
Cosmic rays drive galactic winds, ram pressure propells mainly galactic fountains
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Galactic winds without cosmic rays are much hotter
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Cosmic ray driven wind: mechanism

CR pressure gradient dominates over thermal and ram pressure
gradient and drives outflow:

|∇Pcr +∇Pth| > ρ|∇Φ|
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Conclusions for cosmic ray physics in galaxies

CR hydrodynamics:

novel theory of CR transport mediated by Alfvén waves
developed and coupled to magneto-hydrodynamics

self-generated diffusion coefficient emerges from CR-wave
interactions

CR feedback in galaxy formation:

CR feedback barely impacts ISM or star formation because of
strong ion-neutral damping in disk, which weakens CR coupling

CR feedback drives powerful galactic winds

CR feedback increases mass and energy loading factors by 4
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PICOGAL: From Plasma KInetics to COsmological GALaxy Formation

This project has received funding from the European Research Counsil (ERC) under the European   

Union’s Horizon 2020 research and innovation program (grant agreement No PICOGAL−101019746).
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Literature for the talk

CR hydrodynamics and CR transport:
Pfrommer, Pakmor, Schaal, Simpson, Springel, Simulating cosmic ray physics on
a moving mesh, 2017, MNRAS, 465, 4500.

Thomas & Pfrommer, Cosmic-ray hydrodynamics: Alfvén-wave regulated
transport of cosmic rays, 2019, MNRAS, 485, 2977.

Thomas, Pfrommer, Pakmor, A finite volume method for two-moment cosmic-ray
hydrodynamics on a moving mesh, 2021, MNRAS, 503, 2242.

Thomas, Pfrommer, Enßlin, Probing Cosmic Ray Transport with Radio
Synchrotron Harps in the Galactic Center, 2020, ApJL, 890, L18.

CR feedback in galaxy formation:
Ruszkowski, Pfrommer, Cosmic ray feedback in galaxies and galaxy clusters,
2023, Astron Astrophys Rev, 31, 4.

Thomas, Pfrommer, Pakmor, Cosmic ray-driven galactic winds: transport modes
of cosmic rays and Alfvén-wave dark regions, 2023, MNRAS, 521, 3023.

Thomas, Pfrommer, Pakmor, Why are thermally- and cosmic ray-driven galactic
winds fundamentally different? 2024, A&A, submitted.
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Cosmological galaxy formation
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Cosmic rays in cosmological galaxy simulations

The galaxy formation model
primordial and metal line cooling

sub-resolution model for star formation (Springel+ 03)

mass and metal return from stars to ISM

cold dense gas stabilized by pressurized ISM

thermal and kinetic energy from supernovae modeled
by isotropic wind – launched outside of SF region

black hole seeding and accretion model (Springel+ 05)

thermal feedback from AGN in radio and quasar mode

uniform magnetic field of 10−10 G seeded at z = 128

Simulation suite (Buck, CP+ 2020)

2 galaxies, baryons with 5 × 104 M⊙ ∼ 5 × 106

resolution elements in halo, 2 × 106 star particles

4 models with different CR physics for each galaxy:
no CRs
CR advection
+ CR anisotropic diffusion
+ CR Alfvén wave cooling

The Auriga Project Grand+ (2017)
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Cosmic rays in cosmological galaxy simulations
Auriga MHD models: CR transport changes disk sizes

50
 k

pc

Buck, CP, Pakmor, Grand, Springel (2020)
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Cosmic rays in cosmological galaxy simulations
Auriga MHD models: CR transport modifies the circum-galactic medium
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