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The Hitchhiker’s Guide to ... Blazar Heating

@ the extragalactic TeV Universe

@ plasma physics for cosmologists

@ consequences for

intergalactic magnetic fields

extragalactic gamma-ray
background

thermal history of the Universe

Lyman-« forest

“missing dwarf galaxies”
H I mass function
galaxy cluster bimodality
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Physics of blazar heating TeV emission from blazars

TeV gamma-ray astronomy
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Physics of blazar heating TeV emission from blazars
Plasma instabilities and magnetic fields
Extragalactic gamma-ray background

The TeV gamma-ray sky

There are several classes of TeV sources:
@ Galactic - pulsars, BH binaries, supernova remnants

@ Extragalactic - mostly blazars, two starburst galaxies
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Physics of blazar heating TeV emission from blazars

Unified model of active galactic nuclei

Y [
narrow line region .

g

relativistic jet
BLRG

central SMBH
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Plasma instabilities and magnetic fields
e gamma-ray background

The blazar sequence

@ continuous sequence
from LBL—IBL-HBL

@ TeV blazars are dim
(very sub-Eddington)

@ TeV blazars have
rising spectra in the
Fermi band (o < 2)

Log L [erg s7!]

@ define TeV blazar =
hard IBL + HBL

Log v [Hz]

Ghisellini (2011), arXiv:1104.0006
<
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Plasma instabilities and magnetic fields
Extragalactic gamma-ray background

Propagation of TeV photons

@ 1 TeV photons can pair produce with 1 eV EBL photons:
YTev +Yev — €7 + €~

@ mean free path for this depends on the density of 1 eV photons:
— Ayy ~(385...700) Mpc forz=1...0
— pairs produced with energy of 0.5 TeV (y = 10°)

@ these pairs inverse Compton scatter off the CMB photons:
— mean free path is \c ~ A,,/1000
— producing gamma-rays of ~ 1 GeV

E ~ PYZECMB ~1GeV

@ each TeV point source should also be a GeV point source j
NHITS
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What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray
halo — not seen!
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Plasma instabilities and magnetic fields
Extragalactic gamma-ray background

Measuring IGM B-fields from TeV/GeV observations

@ TeV beam of et /e~ are deflected out of the line of sight
reducing the GeV IC flux — lower limit on B

@ Larmor radius

E E B \'
=g~ %0 <3TeV> <1o16@.) Mpo

@ IC mean free path

E —1

@ for the associated 10 GeV IC photons the Fermi angular
resolution is 0.2° or # ~ 3 x 1073 rad
Xic
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Missing plasma physics?

How do beams of et /e~ propagate through the IGM?
@ plasma processes are important
@ interpenetrating beams of charged particles are unstable
@ consider the two-stream instability:

P
>

et,e” = b e
— )

e, e - b o

et e - p’ o
- )

3

@ one frequency (timescale) and one length in the problem:

Are?
“p _ y, Ao = 28 ~ 10" cm x (LG)’
¥ Y2 Me wp 108/ 15(z=0) xj
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Two-stream instability: mechanism

wave-like perturbation with k|| vyeam, longitudinal charge oscillations
in background plasma (Langmuir wave):

@ initially homogeneous beam-e~:
attractive (repulsive) force by potential maxima (minima)

@ e~ attain lowest velocity in potential minima — bunching up
@ et attain lowest velocity in potential maxima — bunching up

>

e, e

0]
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Plasma instabilities and magnetic fields
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Two-stream instability: mechanism

wave-like perturbation with k|| vyeam, longitudinal charge oscillations
in background plasma (Langmuir wave):

@ beam-et /e~ couple in phase with the background perturbation:
enhances background potential

@ stronger forces on beam-e* /e~ — positive feedback
@ exponential wave-growth — instability

Do

Y

e e /"XJHITS
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Two-stream instability: energy transfer

@ particles with v 2 Vphase:
pair energy — plasma waves — growing modes

@ particles with v < Vphage:
plasma wave energy — pairs — damped modes /,XJHITS
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Plasma instabilities and magnetic fields
Ex amma-ray b ound

Oblique instability

k oblique to vpeam: real word perturbations don’t choose “easy”
alignment = ) all orientations

Beam flow

k”clmp

Beam

Bret (2009), Bret+ (2010) / jHITS
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Beam physics — growth rates

excluded for collective

| henomona y @ consider a light beam
asma e . .
. P 104 19 108 107 penetrating into
r T ”Lmb L L q relatlvely dense
= 10 I é’ plasma
&~ E = .
2 o2 b / 10 2 @ maximum growth rate
% F =102 & n
-3 = = 0]
& 10 g E . 5 ~ 0.4~ beamw
an i ] 10%@ Mam  ©
5 107 g E =
o E & 10 ~ ) ) -
g 10 g 5? @ oblique instability
1076 i 1 I\HIHJ H\HI\‘ 1 PI‘II‘HI‘ 1 IHHT 10 beats IC by tWO Orders
102 107' 1 10 102 of magnitude
E (TeV)
Broderick, Chang, C.P. (2012) ‘ >\J
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Beam physics — complications ...

non-linear saturation:

@ non-linear evolution of these instabilities at these density
contrasts is not known

@ expectation from PIC simulations suggest substantial
isotropization of the beam

@ assume that they grow at linear rate up to saturation

— plasma instabilities dissipate the beam’s energy, no (little) energy
left over for inverse Compton scattering off the CMB

HITS
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TeV emission from blazars — a new paradigm

IC off CMB —  YGeV
v+ Yy — €7 +e" —
plasma instabilities — heating IGM

absence of ygev’s has significant implications for . ..
@ intergalactic B-field estimates

@ ~-ray emission from blazars: spectra, background

additional IGM heating has significant implications for ...
@ thermal history of the IGM: Lyman-« forest

@ late time structure formation: dwarfs, galaxy clusters J
HITS
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Implications for B-field measurements

Fraction of the pair energy lost to inverse-Compton on the CMB: fic = 'c/(T'ic + MNoblique)

EL; (erg s™!) at z=0.1
1041 1042 1043 1044 1045 1046

1 e

L

fIC( 1—e ™)
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I ]
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Conclusions on B-field constraints from blazar spectra

@ it is thought that TeV blazar spectra might constrain IGM B-fields

@ this assumes that cooling mechanism is IC off the CMB +
deflection from magnetic fields

@ beam instabilities may allow high-energy et /e~ pairs to self
scatter and/or lose energy

@ isotropizes the beam — no need for B-field

@ < 1-10% of beam energy to IC CMB photons
— TeV blazar spectra are not suitable to measure IGM B-fields!

HITS
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TeV blazar luminosity density: today

@ collect luminosity of all 23
TeV blazars with good
spectral measurements
§~ @ account for the selection
B effects (sky coverage,
5 duty cycle, galactic
LR ) . occultation, TeV flux limit)
EER T . e TeV blazar luminosity
a4 ST ] density is a scaled
I e ] version (g ~ 0.2%) of
N S that of quasars!
38 40 42 44 46 48
log,4(L/erg st)
Broderick, Chang, C.P. (2012) JXJHlTs
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Unified TeV blazar-quasar model

42

Quasars and TeV blazars are:

@ regulated by the same

- mechanism
g
= @ contemporaneous
0 elements of a single AGN
3, population: TeV-blazar
3 . activity does not lag
H ES ] quasar activity
- ]
- I 1 — assume that they trace
[ ‘ pree ‘ 1 each other for all redshifts!
3 38 40 42 44 46 48
log,4(L/erg st)
Broderick, Chang, C.P. (2012) JXJHWS
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How many TeV blazars are there?

-7.0[ T T T —T
% 7-SF
(=X
= |
= 8o
o L
v [
= -85f
o i
= s
g -9.0f
-9.5L
(0]

Hopkins+ (2007) <B
\JHITS
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How many TeV blazars are there?

-7.0T T T T T
g 7k
=3 [
= i
= 8o
o [
v !
o L
= -8.5F
N i !
s i Fermi hard R
8 -9.0f gamma-ray blazar
i counts
-9.51L L L N L
0 1 2 3 4 5 6
z
Hopkins+ (2007) ——
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How many TeV blazars are there?

-7.0 T T T T
Fermi extragalactic
gamma-ray background
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Fermi number count of “TeV blazars”

1 000 e T T @ number evolution of TeV
i P 1 blazars that are
o t\\ S expected to have been
5 f $ 00 1] observed by Fermivs.
2061 o observed evolution
< 04l bbb @ colors: different flux
- 1 (luminosity) limits
o n=08, 16,31 | connecting the Fermi
0 L L i and the TeV band:
0 0.5 1 1.5 2

LTeV,min(Z) =n I—Fermi,min(z)

Broderick, Chang, C.P. (2012)

— evolving (increasing) blazar population consistent with
observed declining evolution (Fermi flux limit)! ]
HITS
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How many TeV blazars are there at high-z?

-7.0 T T T T
Fermi extragalactic
gamma-ray background
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Fermi probes “dragons” of the gamma-ray sky

Fermi LAT Extragalactic Gamma-ray Background

E o T \\\\\H‘ \\\\\H‘ \\\\\H‘
g 10° B E
£ C = ]
- — —
2]
L [ TR :
& - -
8
@ L
5t RSS
c & Unknown ++
Qe 107 contributors
2 -
=5 -
I |
1] I
g
2 0 Background accounted
ﬁ - for by unresolved AGN
3
= 108 =
0.1 1 10 100
~ Energy (GeV) N
]
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Extragalactic gamma-ray background

@ assume all TeV blazars have identical intrinsic spectra:

1
(E/Ep)™ '+ (E/Ep)* "

FE S L/:_E X

E, is break energy,
oy < «a are low and high-energy spectral indexes

@ extragalactic gamma-ray background (EGRB):

N ¢ nB/\Q( Nz ,
2 Te(E",2")
EEED =4 / av T a2 © :

E’ = E(1 4+ 2’) is gamma-ray energy at emission,
Aq is physical quasar luminosity density,

ng ~ 0.2% is blazar fraction, T is optical depth j
HITS
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Extragalactic gamma-ray background

@ dotted: unabsorbed

= 1 EGRB due to TeV
gt e blazars
g C
2 F @ dashed: absorbed
s [ EGRB due to TeV
2o blazars
% @ solid: absorbed EGRB,
Bf \ after subtracting the

108 il sl il 1510 resolved TeV blazars

E (GeV) (Z < 0.25)

Broderick, Chang, C.P. (2012)
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Evolution of the heating rates

HI,Hel-/Hell-reionization

d 7N
T
5107 ¢
> blazar heatjng
L, 10f
8
5
&t
o0
=
T 01f | 10x larger
= . heating
\ photoheating
1072 F ! 1
10 5 2 1
1+2
/ HITS

Chang, Broderick, C.P. (2012)
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Blazar heating vs. photoheating

@ total power from AGN/stars vastly exceeds the TeV power of blazars
@ Tieu ~ 10* K (1 eV) at mean density (z ~ 2)

T -9
= —_ ~ 10
" moe?

@ radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)
Erad = 1 Qpn ~ 0.1 x 1074 ~ 107°
@ fraction of the energy energetic enough to ionize H 1is ~ 0.1:
e ~0.16g ~107%  — KT ~ keV

@ photoheating efficiency 7pn ~ 107°  — KT ~ non cuy mpC? ~ eV

(limited by the abundance of H I/He 11 due to the small recombination rate)

@ blazar heating efficiency non ~ 1072 — KT ~ npn erag MpC® ~ 10eV__

(limited by the total power of TeV sources) >\j
HITS
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Thermal history of the IGM

10° : ‘ : ‘
— only photoheating LT
- - standard BLF
--- optimistic BLF
> —
=10t}
10 20 10 5 3 1
142

.>\:j HITS

Chang, Broderick, C.P. (2012)
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Evolution of the temperature-density relation

no blazar heating with blazar heating

10°

== Viel et al. (2009)

cee 2=05

10"

TK]

10"

10°

0.1 1
1+6
Chang, Broderick, C.P. (2012)

1
146

@ blazars and extragalactic background light are uniform:
— blazar heating rate independent of density
— makes low density regions hot
— causes inverted temperature-density relation, T o« 1/§ ><J
/ HITS
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Properties of blazar heating
Thermal history of the IGM
The Lyman-« forest

The intergalactic medium

Blazars cause hot voids

no blazar heating with blazar heating

10°

== Viel et al. (2009)

10!

0.1

10

1
140

Chang, Broderick, C.P. (2012)

@ blazars completely change the thermal history of the diffuse
IGM and late-time structure formation

\\/.><‘;JHITS
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Simulations with blazar heating

Puchwein, C.P., Springel, Broderick, Chang (2012):
@ L = 15h~"Mpc boxes with 2 x 3843 particles
@ one reference run without blazar heating

@ three with blazar heating at different levels of efficiency
(address uncertainty)

@ used an up-to-date model of the UV background (raucher-Giguere+ 2009)

HITS
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Properties of blazar heating
Thermal history of the IGM

The intergalactic medium

Temperature-density relation

no blazar heating intermediate blazar heating

i}

log,o(T/K)

/s
3.5

. Viel et al. 2009, F=0.1-0.8 log o (Mpix /(™' M..)) h:t:- E

s Viel et al. 2009, F=0-0.9 56 7 8 910
3.0 1 1 I I I I | |
0 1 2 3 -2 -1

logo(p/{P))

L L
3

Puchwein, C.P., Springel, Broderick, Chang (201 2)\ ><J
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Ly-a spectra

transmitted flux fraction e~ *

02

no blazar heating

intermediate b. h.
|

0.00 L : I L I
0 1000 2000 3000 4000
velocity [km s '] -

Puchwein+ (2012) /’\JHITS
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Optical depths and temperatures

T T T T T T
no blazar heating o 10 blazar heating
——- weak blazar heating i
intermediate blazar heating
—-— strong blazar heating
©  Beckeretal. 2011

=
n
T
I
w
n
T

——- weak blazar heating
intermediate blazar heating

—-= strong blazar heating

3 %
L
S 041 ¢ Vieletal 2004 E]
a =30
3 o Tytler et al. 2004 5
3 FG 08 =
g 03 g
2 Zast
3 £
g P . 3
02 F o P e
- oG
P e L
P /,l 2.0
01 ’.i L L L L Il L L L L L
1.8 2.0 22 24 2.6 2.8 3.0 2.0 22 24 2.6 2.8 3.0

redshift z redshift z
Puchwein+ (2012)

Redshift evolutions of effective optical depth and IGM temperature
match data only with additional heating, e.g., provided by blazars! -« XJ
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The intergalactic medium

Properties of blazar heating
Thermal history of the IGM
The Lyman-« forest

Ly-a flux PDFs and power spectra

PDF of transmitted flux fraction

10!
10!

107!

tuned UV background
T T T

no blazar heating
weak blazar heating
intermediate blazar heating

strong blazar heating
Kim et al. 2007

I
0.4 0.6
transmitted flux fraction

0.2

Puchwein+ (2012)

tuned UV background

107! T
2=207
)
o
1072 |-
10 blazar heating
weak blazar heating
— intermediate blazar heating
=1 == strong blazar heating
< & Vielatal. 2004
X 1073 |
|k 10—1 T
e T
H [F=n
z ¥
5
: [t
1072 F
§  Kimetal 2004
103 —
102
k[skm™]
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Voigt profile decomposition

V[ km/sec |
0o 500 1000 1500 2000 2500 3000
Y N TR T T T < LAY AV gy T %0

7 N T~7

LI L

o
o

L L L | L L L L
4870 4880 4890 4900 4910

@ decomposing Lyman-« forest into individual Voigt profiles

@ allows studying the thermal broadening of absorption lines

a
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Properties of blazar heating

The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Voigt profile decomposition — line width distribution

0.08 T T . : T
Nig > 1083¢m=2 no blazar heating
0.07 - 2.75 <7< 3.05 ——- weak blazar heating -
A intermediate blazar h.
/A" —:— strong blazar heating

0.06 - 9 ¢ Kirkman & Tytler 97 7
L 005+ [
g ji
2, Lo
< 0.04 | JIB
5 it
% an
o 0.03 :'l,
~ i

i
0.02 - :.:/l i
ig
0.01 |- i
a
0.00 =
0 10 20

bkms~ 1] XJ
. / HITS
Puchwein+ (2012)
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Lyman-« forest in a blazar heated Universe

improvement in modelling the Lyman-« forest is a direct consequence
of the peculiar properties of blazar heating:

@ heating rate independent of IGM density — naturally produces
the inverted T—p relation that Lyman-« forest data demand

@ recent and continuous nature of the heating needed to match
the redshift evolutions of all Lyman-« forest statistics

@ magnitude of the heating rate required by Lyman-« forest data
~ the total energy output of TeV blazars (or equivalently ~ 0.2%
of that of quasars)

4
HITS
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Formation of dwarf galaxies
Puzzles in galaxy formation
Structure formation Conclusions

Entropy evolution

temperature evolution entropy evolution

10°
— only photoheating L , |[— only photoheating
-~ standard BLF o S 107l -~ standard BLF et
--- optimistic BLF - -

--- optimistic BLF el . -
g 10
. B
[<jpet =
=10
= &
<
0.1
3
10%5 ] 10 5 B
1+2

C.P,, Chang, Broderick (2012)
. _2 .
@ evolution of entropy, Ko = kTn, 73, governs structure formation

@ blazar heating: late-time, evolving, modest entropy floor \Y; J
NHITS
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Formation of dwarf galaxies
Puzzles in galaxy formation
Structure formation Conclusions

Dwarf galaxy formation — Jeans mass

@ thermal pressure opposes gravitational collapse on small scales
@ characteristic length/mass scale below which objects do not form

@ hotter IGM — higher IGM pressure — higher Jeans mass:

1/2

3 T3 3/2

MJ o ?.;2 o IGM N MJ,bIazar ~ (Tblazar) Z 30
P 14 MJ,photo 7-photo

— depends on instantaneous value of ¢

@ “filtering mass” depends on full thermal history of the gas:
accounts for delayed response of pressure in counteracting
gravitational collapse in the expanding universe

@ apply corrections for non-linear collapse

.>\:j HITS
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Formation of dwarf galaxies
Puzzles in galaxy formation
Structure formation Conclusions

Dwarf galaxy formation — Filtering mass

102 blazar heatinN""’*
only photoheating—__.-~=>-"" "
==4 Mg~ 10""M,
3 107 Mg~ 10'°M,
=
=4 10°
10°= .
= ‘
\E 1o0f LTI 3
| 4
10 1
1+z
C.P,, Chang, Broderick (2012) XJ
/ HITS
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Formation of dwarf galaxies
Puzzles in galaxy formation
Structure formation Conclusions

Peebles’ void phenomenon explained?

mean density void, 1+ 46 =0.5
102 148=1,7,4=10 o 12| 1+0=05724,=10
—~ 1090 = 1001
20 s
= =
= linear theory = linear theory
0 ___ nonineartheory w0 _ noninear theory

_._._._ optimistic blazar —._._.. optimistic blazar

— - - - standard blazar ____ standard blazar
10° __ only photoheating | 106 — only photoheating |
& t - ; —
§ 10 T --I0H § 10 v/::,::‘ - E
B | S il 4 s b_-—-———="" 4
10 1 10 1
1+z 1+z

C.P, Chang, Broderick (2012)

@ blazar heating efficiently suppresses the formation of void dwarfs
within existing DM halos of masses < 3 x 10" M, (z = 0)

@ may reconcile the number of void dwarfs in simulations and the -
paucity of those in observations >‘Jm
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“Missing satellite” problem in the Milky Way
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Substructures in cold DM simulations much more numerous than .
observed number of Milky Way satellites! ><]H,Ts
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When do dwarfs form?

Q3 01 g
V= age (Gyr)

Dolphin+ (2005)
isochrone fitting for different metallicities — star formation histories ~ XJ
g HITS
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s form?
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Milky Way satellites: formation history and abundance

satellite formation time satellite luminosity function

br——T—T1+—71T—"——T—"—T"—7—T 100 : T T
Maccio & Fontanot (2010)-{ G1 Kos

q no blazar heating:

linear theory

non-linear theory

)
0 ‘\2
late forming satellites (< 10 Gyr) 3 0E |
not observed! 2

Maccio+ (2010)

@ blazar heating suppresses late satellite formation, may reconcile
low observed dwarf abundances with CDM simulations ) XJ
¢ HITS
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Galactic H I-mass function
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@ H I-mass function is too flat (i.e., gas version of missing dwarf problem!)

@ photoheating and SN feedback too inefficient

@ IGM entropy floor of K ~ 15keV cm? at z ~ 2 — 3 successfull

HITS
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Conclusions on blazar heating

@ explains puzzles in high-energy astrophysics:

o lack of GeV bumps in blazar spectra without IGM B-fields
e unified TeV blazar-quasar model explains Fermi source
counts and extragalactic gamma-ray background

@ novel mechanism; dramatically alters thermal history of the IGM:

e uniform and z-dependent preheating
e rate independent of density — inverted T—p relation
e quantitative self-consistent picture of high-z Lyman-« forest

@ significantly modifies late-time structure formation:

e suppresses late dwarf formation (in accordance with SFHs):
“missing satellites”, void phenomenon, H I-mass function
e group/cluster bimodality of core entropy values

HITS
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When do clusters form?

mass accretion history mass accretion rates
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C.P, Chang, Broderick (2012)

@ most cluster gas accretes after z = 1, when blazar heating can
have a large effect (for late forming objects)!

HITS
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Entropy floor in clusters

Cluster entropy profiles Planck stacking of optical clusters
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@ Do optical and X-ray/Sunyaev-Zel'dovich cluster observations
probe the same population? (Hicks+ 2008, Planck Collaboration 2011) s XJ
HITS
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Entropy profiles: effect of blazar heating

varying formation time varying cluster mass
1000
M, = 3% 10% Mg My =1x10%Mg, 2=05
My =3%x10%Mg, 2=05
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‘“g N§ 1001 g
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101 optimistic blazar 10+ optimistic blazar
0.01 0.10 1.00 0.01 0.10 1.00
' Rom r/ Ry

C.P,, Chang, Broderick (2012)
assume big fraction of intra-cluster medium collapses from IGM:
@ redshift-dependent entropy excess in cores .
@ greatest effect for late forming groups/small clusters ,‘XJH.TS
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Gravitational reprocessing of entropy floors
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Cool-core versus non-cool core clusters

Number of clusters

Fractional number of clusters

100

Cavagnolo+ (2009)

%J HITS
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Cool-core versus non-cool core clusters

Number of clusters
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@ time-dependent preheating + gravitational reprocessing
— CC-NCC bifurcation (two attractor solutions)

@ need hydrodynamic simulations to confirm this scenario TXJHWS
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How efficient is heating by AGN feedback?

- — —
C.P., Chang, Broderick (2011)
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How efficient is heating by AGN feedback?
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C.P., Chang, Broderick (2011)
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How efficient is heating by AGN feedback?
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How efficient is heating by AGN feedback?
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How efficient is heating by AGN feedback?
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How efficient is heating by AGN feedback?
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How efficient is heating by AGN feedback?
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How efficient is heating by AGN feedback?

C.P., Chang, Broderick (2011) FomlKTx =59keV)
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AGNSs cannot transform CC to NCC clusters (on a buoyancy timescale) ‘,SQJHITS
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