New perspectives on shocks, cosmic rays, and magnetic fields in galaxy clusters

Christoph Pfrommer1,2

in collaboration with

L. Jonathan Dursi1, Anders Pinzke3, Torsten Enßlin4, Volker Springel4

1Canadian Institute for Theoretical Astrophysics, Canada
2Heidelberg Institute for Theoretical Studies, Germany
3Stockholm University, Sweden
4Max-Planck Institute for Astrophysics, Germany

24 Aug 2010 / Physics of the Intracluster Medium, Michigan
1. Magnetic draping on spiral galaxies
 - Polarized radio ridges
 - Physics of magnetic draping
 - Implications and speculations

2. Cosmic rays in clusters
 - Physical processes
 - Cosmological simulations
 - Gamma-ray emission

3. Conclusions
Outline

1. Magnetic draping on spiral galaxies
 - Polarized radio ridges
 - Physics of magnetic draping
 - Implications and speculations

2. Cosmic rays in clusters
 - Physical processes
 - Cosmological simulations
 - Gamma-ray emission

3. Conclusions
Polarized synchrotron emission in a field spiral: M51

- polarized synchrotron intensity follows the spiral pattern and is strongest in between the spiral arms (NGC 6946)
- the polarization ‘B-vectors’ are aligned with the spiral structure
- a promising generating mechanism is the *dynamo which transfers mechanical into magnetic energy* (Beck et al. 1996)
Brueggen (2008)

3D hydrodynamical simulations show that low-density gas in between spiral arms is quickly stripped irrespective of disk radius (Tonnesen & Bryan 2010)

being flux-frozen into this dilute plasma, the large scale field will also be stripped, leaving behind the small scale field in the star forming regions

→ beam depolarization effects and superposition of causally unconnected star forming patches along the line-of-sight cause the resulting radio synchrotron emission to be effectively unpolarized
Polarized synchrotron ridges in Virgo spirals

Vollmer et al. (2007): 6 cm PI (contours) + B-vectors; Chung et al. (2009): HI (red)
Draping field lines around a moving object
Magnetic draping on spiral galaxies
Cosmic rays in clusters
Conclusions
Polarized radio ridges
Physics of magnetic draping
Implications and speculations

Magnetic draping around a spiral galaxy – MHD

Athena simulations of spiral galaxies interacting with a uniform cluster magnetic field. There is a *sheath of strong field draped around the leading edge* (field strength is color coded).
Streamlines in the rest frame of the galaxy

- as the flow approaches the galaxy it decelerates and gets deflected
- only those streamlines initially in a narrow tube of radius
 \[\lambda_\perp \approx \frac{R}{\sqrt{3\beta M^2}} \approx \frac{R}{15} \approx 1.3 \text{ kpc} \]
 from the stagnation line become part of the magnetic draping layer (color coded) \(\rightarrow \) constraints on \(\lambda_B \)

- the streamlines that do not intersect the tube get deflected away from the galaxy, become never part of the drape and eventually get accelerated (Bernoulli effect)
- note the kink feature in some draping-layer field lines due to back reaction as the solution changes from the hydrodynamic potential flow solution to that in the draped layer
Magnetic draping around a spiral galaxy – physics

- the galactic ISM is pushed back by the ram pressure wind $\sim \rho v^2$
- the stars are largely unaffected and lead the gas
- the draping sheath is formed at the contact of ISM/ICM
- as stars become SN, their remnants accelerate CRes that populate the field lines in the draping layer

CRes are transported diffusively (along field lines) and advectively as field lines slip over the galaxy

CRes emit radio synchrotron radiation in the draped region, tracing out the field lines there \rightarrow coherent polarized emission at the galaxies’ leading edges
Magnetic draping and polarized synchrotron emission
Synchrotron B-vectors reflect the upstream orientation of cluster magnetic fields

Christoph Pfrommer
Shocks, cosmic rays, and magnetic fields
Varying galaxy inclination and magnetic tilt

Side view:
Galaxy moving upwards

Top view:
Galaxy moving out of page
Observations versus simulations

A
ram-pressure stripped tail
HI hot spot
projected proper motion vector
PI hot spot
projected normal to the PI hot spot

B

C

D

E

F

Christoph Pfrommer
Shocks, cosmic rays, and magnetic fields
Mapping out the magnetic field in Virgo

NGC 4501

NGC 4654

υ < 600 km/s
600 km/s < υ < 1300 km/s
1300 km/s < υ < 2000 km/s
2000 km/s < υ
Magneto-thermal instability: the idea

Convective stability in a gravitational field:

- Classical Schwarzschild criterion: \(\frac{dS}{dz} > 0 \)
- Long MFP, Balbus criterion: \(\frac{dT}{dz} > 0 \)
- New instability causes field lines to reorient radially \(\implies \) efficient thermal conduction radially (close to Spitzer)

The non-linear behavior of the MTI (Parrish & Stone 2007).

- Adiabatic boundary conditions for \(T(r) \): the instability can exhaust the source of free energy \(\implies \) isothermal profile
- Fixed boundary conditions for \(T(r) \): field lines stay preferentially radially aligned (35 deg mean deviation from radial)
Magneto-thermal instability: the idea

Convective stability in a gravitational field:

- Classical Schwarzschild criterion: \[\frac{dS}{dz} > 0 \]
- Long MFP, Balbus criterion: \[\frac{dT}{dz} > 0 \]
- New instability causes field lines to reorient radially → efficient thermal conduction radially (close to Spitzer)

The non-linear behavior of the MTI (Parrish & Stone 2007).

- Adiabatic boundary conditions for \(T(r) \): the instability can exhaust the source of free energy → isothermal profile
- Fixed boundary conditions for \(T(r) \): field lines stay preferentially radially aligned (35 deg mean deviation from radial)
Gravitational shock wave heating

The observed temperature profile in clusters is decreasing outwards which is the necessary condition for MTI to operate → gravitational heating can stabilize the temperature profile:

Mach number distribution weighted by $\varepsilon_{\text{diss}}$.

Energy flux through shock surface $\dot{E}_{\text{diss}}/R^2 \sim \rho u^3 \rightarrow$ increase towards the center.

Christoph Pfrommer

Shocks, cosmic rays, and magnetic fields
Implications for thermal stability of galaxy clusters

- Radial fields in non-cool core clusters (NCCs) imply efficient thermal conduction that stabilizes these systems against entering a cool-core state: $\tau_{\text{cond}} = \lambda^2 / \chi_C \approx 2.3 \times 10^7 \text{ yr} \ (\lambda/100 \text{ kpc})^2$, where χ_C is the Spitzer thermal diffusivity (using $kT = 10 \text{ keV}$, $n = 5 \times 10^{-3} \text{ cm}^{-3}$)

- Current cosmological cluster simulations fail to reproduce NCCs that have no AGN activity \rightarrow MHD + anisotropic conduction

Cavagnolo et al. (2009)
Detecting the orientation of magnetic fields in galaxy clusters

Christoph Pfrommer1,* and L. Jonathan Dorsi1,2

Clusters of galaxies, filled with hot magnetized plasma, are the largest bound objects in existence and an important touchstone in understanding the formation of structures in our Universe. In such clusters, thermal conduction follows field lines, so magnetic fields strongly shape the cluster's thermal history; that some have not since cooled and collapsed is a mystery. In a seemingly unrelated puzzle, recent observations of Virgo cluster spiral galaxies imply ridges of strong, coherent magnetic fields offset from their centre. Here we demonstrate, using three-dimensional magnetohydrodynamical simulations, that such ridges are easily explained by galaxies sweeping up field lines as they orbit inside the cluster. This magnetic drape is then lit up with cosmic rays from the galaxies' stars, generating coherent polarized emission at the galaxies' leading edges. This immediately presents a technique for probing local orientations and characteristic length scales of cluster magnetic fields. The first application of this technique, mapping the field of the Virgo cluster, gives a startling result: outside a central region, the magnetic field is preferentially oriented radially as predicted by the magnetothermal instability. Our results strongly suggest a mechanism for maintaining some clusters in a 'non-cooling-core' state.
Conclusions on magnetic draping around galaxies

- Draping of cluster magnetic fields naturally explains polarization ridges at Virgo spirals.

NGC 4501

This represents a new tool for measuring the in situ orientation and coherence scale of cluster magnetic fields. Application to the Virgo cluster shows that the magnetic field is preferentially aligned radially. This finding is suggestive that the MTI may be operating and implies efficient thermal conduction close to the Spitzer value. It also proposes that non-cool core clusters are stabilized by thermal conduction.
Conclusions on magnetic draping around galaxies

- draping of cluster magnetic fields naturally explains polarization ridges at Virgo spirals
- this represents a new tool for measuring the in situ orientation and coherence scale of cluster magnetic fields
Conclusions on magnetic draping around galaxies

- Draping of cluster magnetic fields naturally explains polarization ridges at Virgo spirals.
- This represents a new tool for measuring the in situ orientation and coherence scale of cluster magnetic fields.
- Application to the Virgo cluster shows that the magnetic field is preferentially aligned radially.
Conclusions on magnetic draping around galaxies

- Draping of cluster magnetic fields naturally explains polarization ridges at Virgo spirals.
- This represents a new tool for measuring the in situ orientation and coherence scale of cluster magnetic fields.
- Application to the Virgo cluster shows that the magnetic field is preferentially aligned radially.
- This finding is suggestive that the MTI may be operating and implies efficient thermal conduction close to the Spitzer value.
- It also proposes that non-cool core clusters are stabilized by thermal conduction.
Outline

1. Magnetic draping on spiral galaxies
 - Polarized radio ridges
 - Physics of magnetic draping
 - Implications and speculations

2. Cosmic rays in clusters
 - Physical processes
 - Cosmological simulations
 - Gamma-ray emission

3. Conclusions
Shocks in galaxy clusters

1E 0657-56 ("Bullet cluster")
(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing: NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

Abell 3667
(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)
Radiative simulations with GADGET – flowchart

Cluster observables:
- Sunyaev-Zeldovich effect
- X-ray emission
- Galaxy spectra

Physical processes in clusters:
- Stellar populations
- Radiative cooling
- Supernovae
- Shocks
- Thermal energy

CP, Enßlin, Springel (2008)
Radiative simulations with cosmic ray (CR) physics

Cluster observables:
- Sunyaev-Zeldovich effect
- X-ray emission
- Galaxy spectra
- Radio synchrotron
- Gamma-ray emission

Physical processes in clusters:
- Radiative cooling
- Stellar populations
- Supernovae
- Shocks
- Cosmic ray energy
- Coulomb losses

Loss processes: red
Gain processes: green
Observables: yellow
Populations: blue

CP, Enßlin, Springel (2008)
Radiative simulations with extended CR physics

Cluster observables:
- Sunyaev-Zeldovich effect
- X-ray emission
- Galaxy spectra
- Radio synchrotron
- Gamma-ray emission

Physical processes in clusters:
- Radiative cooling
- Stellar populations
- Supernovae
- Shocks
- AGN
- Coulomb losses
- Cosmic ray energy
- CR diffusion
- Heat conduction
- Loss processes
- Gain processes
- Observables
- Populations

CP, Enßlin, Springel (2008)
Radiative cool core cluster simulation: gas density
Mass weighted temperature

\[\frac{\langle T \rho_{\text{gas}} \rangle}{\langle \rho_{\text{gas}} \rangle} [K] \]
Mach number distribution weighted by $\varepsilon_{\text{diss}}$

\[\langle \dot{M} \varepsilon_{\text{diss}} / \langle \dot{\varepsilon}_{\text{diss}} \rangle \]
Mach number distribution weighted by $\varepsilon_{\text{CR, inj}}$
CR pressure P_{CR}

$\langle P_{CR} \rho_{\text{gas}} \rangle / \langle \rho_{\text{gas}} \rangle \left[\text{erg cm}^{-3} h_{70}^{-2} \right]$

$10^{-17} \quad 10^{-16} \quad 10^{-15} \quad 10^{-14} \quad 10^{-13} \quad 10^{-12}$
Relative CR pressure $P_{\text{CR}}/P_{\text{total}}$

$\langle P_{\text{CR}}/P_{\text{total}} \rho_{\text{gas}} \rangle / \langle \rho_{\text{gas}} \rangle$

Christoph Pfrommer

Shocks, cosmic rays, and magnetic fields
Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Energy sources:
- kinetic energy from structure formation
- supernovae & active galactic nuclei

Plasma processes:
- turbulent cascade & plasma waves
- shock waves
Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Energy sources:
- Kinetic energy from structure formation
- Supernovae & active galactic nuclei

Plasma processes:
- Turbulent cascade & plasma waves
- Shock waves

Relativistic particle pop.:
- Re-acceleration CR electrons
- Primary CR electrons
- Secondary CR electrons
- CR protons

Hadronic reaction
Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Energy sources:
- kinetic energy from structure formation
- supernovae & active galactic nuclei

Plasma processes:
- turbulent cascade & plasma waves
- shock waves
- CR protons

Relativistic particle pop.:
- re-acceleration CR electrons
- primary CR electrons
- secondary CR electrons

Observational diagnostics:
- radio synchrotron emission
- IC: hard X-ray & gamma-ray emission

Christoph Pfrommer
Shocks, cosmic rays, and magnetic fields
Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Energy sources:
- kinetic energy from structure formation
- supernovae & active galactic nuclei

Plasma processes:
- turbulent cascade & plasma waves
- shock waves
- CR protons

Relativistic particle pop.:
- re-acceleration CR electrons
- primary CR electrons
- secondary CR electrons
- π^0

Observational diagnostics:
- radio synchrotron emission
- IC: hard X-ray & gamma-ray emission
- gamma-ray emission

Christoph Pfrommer
Shocks, cosmic rays, and magnetic fields
Which one is the simulation/observation of A2256?

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
Non-thermal emission from clusters
Exploring the memory of structure formation

- primary, shock-accelerated CR electrons resemble current accretion and merging shock waves
- CR protons/hadronically produced CR electrons trace the time integrated non-equilibrium activities of clusters that is modulated by the recent dynamical activities

How can we read out this information about non-thermal populations?
→ new era of multi-frequency experiments, e.g.:
 - GMRT, LOFAR, MWA, LWA, SKA: interferometric array of radio telescopes at low frequencies ($\nu \approx (15 - 240)$ MHz)
 - Simbol-X/NuSTAR: future hard X-ray satellites ($E \approx (1 - 100)$ keV)
 - Fermi γ-ray space telescope ($E \approx (0.1 - 300)$ GeV)
 - Imaging air Čerenkov telescopes ($E \approx (0.1 - 100)$ TeV)
Non-thermal emission from clusters
Exploring the memory of structure formation

- primary, shock-accelerated CR electrons resemble current accretion and merging shock waves
- CR protons/hadronically produced CR electrons trace the time integrated non-equilibrium activities of clusters that is modulated by the recent dynamical activities

How can we read out this information about non-thermal populations? → new era of multi-frequency experiments, e.g.:

- **GMRT, LOFAR, MWA, LWA, SKA**: interferometric array of radio telescopes at low frequencies ($\nu \approx (15 - 240) \text{ MHz}$)
- **Simbol-X/NuSTAR**: future hard X-ray satellites ($E \approx (1 - 100) \text{ keV}$)
- **Fermi γ-ray space telescope**: ($E \approx (0.1 - 300) \text{ GeV}$)
- **Imaging air Čerenkov telescopes**: ($E \approx (0.1 - 100) \text{ TeV}$)
CR proton and γ-ray spectrum (Pinzke & CP 2010)

\begin{align*}
\frac{p}{P_p} &= \frac{p}{m_p c} \\
\nu(p) &= p^2 \\
\frac{F_\gamma(\gamma > E_\gamma)}{E_\gamma}\left[\text{GeV cm}^{-2}\text{s}^{-1}\right] \\
\text{Pion decay} \\
pIC \\
sIC
\end{align*}
Hadronic γ-ray emission, $E_\gamma > 100$ GeV

Christoph Pfrommer

Shocks, cosmic rays, and magnetic fields
Inverse Compton emission, $E_{IC} > 100$ GeV

Christoph Pfrommer

Shocks, cosmic rays, and magnetic fields
Total γ-ray emission, $E_\gamma > 100$ GeV

$S_{\text{total}}(E_\gamma > 100 \text{ GeV}) \ [\text{ph cm}^{-2} \text{s}^{-1}]$

$-5 \quad 0 \quad 5$

$-8 \quad -6 \quad -4 \quad -2 \quad 0 \quad 2 \quad 4 \quad 6 \quad 8$

$x \ [\text{Mpc}]$

$y \ [\text{Mpc}]$

Christoph Pfrommer

Shocks, cosmic rays, and magnetic fields
Photon index Γ - variations on large scales

- $\Gamma^{\text{1 GeV}}_{\text{100 MeV}}$ (Fermi): pion bump (center)
 transition to pIC (strong accretion shocks)

- $\Gamma^{\text{1 TeV}}_{\text{100 GeV}}$ (IACT’s): pion-decay (center)
 pIC (accretion shocks, cutoff E_{max})

Christoph Pfrommer
Shocks, cosmic rays, and magnetic fields
Normalized CR spectrum shows universal concave shape → governed by hierarchical structure formation and the implied distribution of Mach numbers that a fluid element had to pass through in cosmic history (Pinzke & CP 2010).
An analytic model for the cluster γ-ray emission

Comparison: simulation vs. analytic model, $M_{\text{vir}} \approx (10^{14}, 10^{15}) M_\odot$

Spatial γ-ray emission profile

Pion decay spectrum
Gamma-ray scaling relations

Scaling relation + complete sample of the brightest X-ray clusters (HIFLUGCS) → predictions for Fermi and IACT’s
Predicted cluster sample for *Fermi* and IACT’s

- **Black**: Optimistic model, including galactic ‘point sources’ that bias \(\gamma \)-ray flux high;
- **Red**: Realistic model, excluding galactic ‘point sources’

Figure Notes

- **Axes**:
 - \(F_\gamma(E_\gamma > 100 \text{MeV}) \) on the y-axis
 - \(F_\gamma(E_\gamma > 100 \text{GeV}) \) on the y-axis (larger scale)
- **Clusters**:
 - OPHIUCHU
 - COMA
 - FORNAX
 - A3627
 - PERSEUS
 - A3526
 - A1060
 - A0754
 - A3926
 - 3C129
 - M49
 - A0754

Graph Details

- **Lines**
 - CRs with galaxies
 - CRs without galaxies

Conclusion

- **Physical processes**
- **Cosmological simulations**
- **Gamma-ray emission**
\(\gamma \)-ray flux limits from *Fermi* (Ackermann et al. 2010)
Outline

1. Magnetic draping on spiral galaxies
 - Polarized radio ridges
 - Physics of magnetic draping
 - Implications and speculations

2. Cosmic rays in clusters
 - Physical processes
 - Cosmological simulations
 - Gamma-ray emission

3. Conclusions
Conclusions

In contrast to the thermal plasma, the non-equilibrium distributions of CRs preserve the information about their injection and transport processes and provide thus a unique window of current and past structure formation processes and diffusive shock acceleration!

Universal distribution of CR protons determined by maximum shock acceleration efficiency ζ_{max} and adiabatic transport: mapping between the hadronic γ-ray emission and ζ_{max}

- cosmological simulations are indispensable for exploring this (non-linear) map
- *Fermi* limits are in agreement with simulations using most optimistic assumptions of CR acceleration and transport
- spectral shape illuminates the process of structure formation
Conclusions

In contrast to the thermal plasma, the non-equilibrium distributions of CRs preserve the information about their injection and transport processes and provide thus a unique window of current and past structure formation processes and diffusive shock acceleration!

Universal distribution of CR protons determined by maximum shock acceleration efficiency ζ_{max} and adiabatic transport: mapping between the hadronic γ-ray emission and ζ_{max}

- cosmological simulations are indispensable for exploring this (non-linear) map
- *Fermi* limits are in agreement with simulations using most optimistic assumptions of CR acceleration and transport
- spectral shape illuminates the process of structure formation
Pfrommer & Dursi, 2010, Nature Phys. 6, 520-526, Detecting the orientation of magnetic fields in galaxy clusters

Magnetic draping of a non-uniform B-field

(Non-)observation of polarization twist constrains magnetic coherence length
Magnetic coherence scale estimate by radio ridges

- observed polarised draping emission → field coherence length λ_B is at least galaxy-sized
- if $\lambda_B \sim 2R_{\text{gal}}$, then the change of orientation of field vectors imprint as a change of the polarisation vectors along the vertical direction of the ridge showing a ‘polarisation-twist’

- the reduced speed of the boundary flow means that a small L_{drape} corresponds to a larger length scale of the unperturbed magnetic field ahead of the galaxy NGC 4501

$$L_{\text{coh}} \simeq \eta L_{\text{drape}} v_{\text{gal}} / v_{\text{drape}} = \eta \tau_{\text{syn}} v_{\text{gal}} > 100 \text{ kpc},$$

with $\tau_{\text{syn}} \simeq 5 \times 10^7 \text{ yr}$, $v_{\text{gal}} \simeq 1000 \text{ km/s}$, and a geometric factor $\eta \simeq 2$
Biases in inferring the field orientation

- **Uncertainties in estimating the 3D velocity**: v_r, ram-pressure stripped gas visible in HI morphology → $\hat{\mathbf{v}}_t$

- **Direction-of-motion asymmetry**:
 Magnetic field components in the direction of motion bias the location of $B_{\text{max, drape}}$ (figure to the right):
 draping is absent if $B \parallel \mathbf{v}_{\text{gal}}$

- **Geometric bias**:
 Polarized synchrotron emission only sensitive to traverse magnetic field B_t (⊥ to LOS) → maximum polarized intensity may bias the location of $B_{\text{max, drape}}$ towards the location in the drape with large B_t