Is cosmic ray heating relevant in cool core clusters?

Christoph Pfrommer

in collaboration with

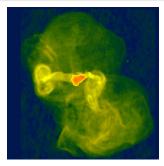
S. Jacob, R. Weinberger, R. Pakmor, V. Springel Heidelberg Institute for Theoretical Studies, Germany

ICM 2016 Workshop, University of Minnesota, Aug 2016

Outline

Cosmic ray feedback

- Observations of M87
- Cosmic ray heating
- Local stability


2 Diversity of cool cores

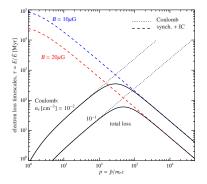
- Steady state solutions
- Non-thermal emission
- Simulations

Observations of M87 Cosmic ray heating Local stability

Messier 87 at radio wavelengths

 $\nu =$ 1.4 GHz (Owen+ 2000)

 $\nu =$ 140 MHz (LOFAR/de Gasperin+ 2012)

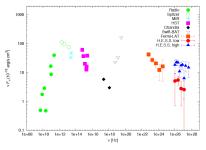

- high-*ν*: freshly accelerated CR electrons low-*ν*: fossil CR electrons → time-integrated AGN feedback!
- LOFAR: halo confined to same region at all frequencies and no low-ν spectral steepening → puzzle of "missing fossil electrons"

Observations of M87 Cosmic ray heating Local stability

Solution to the "missing fossil electrons" problem

solution:

• Coulomb cooling removes fossil electrons \rightarrow efficient mixing of CR electrons and protons with dense cluster gas \rightarrow predicts γ rays from CRp-p interactions: $p + p \rightarrow \pi^0 + ... \rightarrow 2\gamma + ...$


C.P. (2013)

Observations of M87 Cosmic ray heating Local stability

The gamma-ray picture of M87

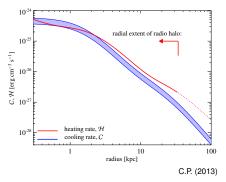
- high state is time variable
 → jet emission
- low state:(1) steady flux
 - (2) γ -ray spectral index (2.2)
 - = CRp index
 - = CRe injection index as probed by LOFAR
 - (3) spatial extension is under investigation (?)

Rieger & Aharonian (2012)

 \rightarrow confirming this triad would be smoking gun for first γ -ray signal from a galaxy cluster!

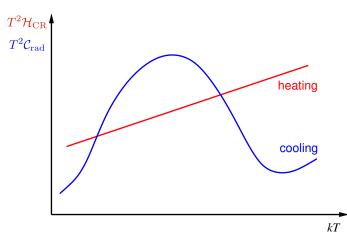
Observations of M87 Cosmic ray heating Local stability

AGN feedback = cosmic ray heating (?)


hypothesis: low state γ -ray emission traces π^0 decay within cluster

 cosmic rays excite Alfvén waves that dissipate the energy → heating rate

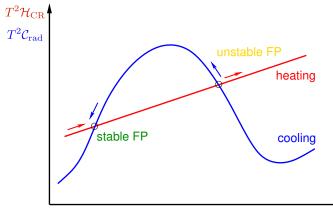
 $\mathcal{H}_{cr} = |\textbf{\textit{v}}_{A} \boldsymbol{\cdot} \boldsymbol{\nabla} \textbf{\textit{P}}_{cr}|$


(Loewenstein+ 1991, Guo & Oh 2008, Enßlin+ 2011, Wiener+ 2013, C.P. 2013)

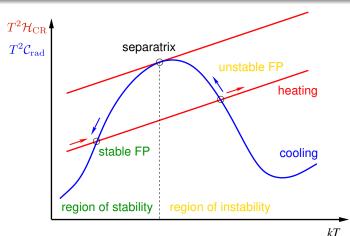
 calibrate P_{cr} to γ-ray emission and v_A to radio/X-ray emission
 → spatial heating profile

 \rightarrow cosmic-ray heating matches radiative cooling (observed in X-rays) and may solve the famous "cooling flow problem" in galaxy clusters!

Observations of M87 Cosmic ray heating Local stability


- isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations

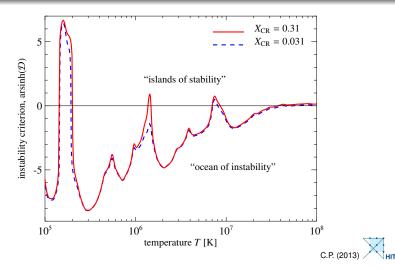
Observations of M87 Cosmic ray heating Local stability


- isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations

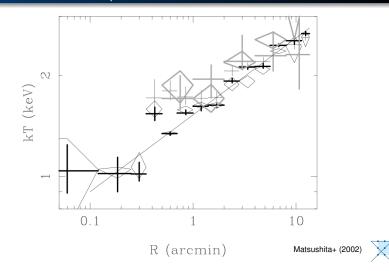
Observations of M87 Cosmic ray heating Local stability

- kΤ
- isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations

Observations of M87 Cosmic ray heating Local stability



- isobaric perturbations to global thermal equilibrium
- CRs are adiabatically trapped by perturbations


Observations of M87 Cosmic ray heating Local stability

Local stability analysis (2) Theory predicts observed temperature floor at $kT \simeq 1$ keV

Observations of M87 Cosmic ray heating Local stability

Virgo cluster cooling flow: temperature profile X-ray observations confirm temperature floor at $kT \simeq 1$ keV

Christoph Pfrommer Cosmic ray heating in cool core clusters

Steady state solutions Non-thermal emission Simulations

How universal is CR heating in cool core clusters?

• no γ rays observed from other clusters $\rightarrow P_{cr}$ unconstrained

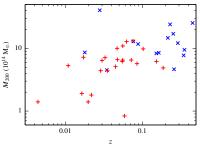
strategy:

- (1) construct large sample of 39 cool cores
- (2) search for spherically symmetric, steady-state solutions: CR heating (\mathcal{H}_{cr}) + conductive heating $(\mathcal{H}_{th}) \approx$ cooling (\mathcal{C}_{rad})
- (3) calculate hadronic radio and γ-ray flux F_{had} and compare to observed fluxes F_{obs}

consequences:

 $\Rightarrow \text{if } \mathcal{H}_{cr} + \mathcal{H}_{th} \approx \mathcal{C}_{rad} \; \forall \; r \text{ and } \mathcal{F}_{had} \leq \mathcal{F}_{obs}:$

successful CR heating model that is locally stable at 1 keV


⇒ otherwise CR heating ruled out as dominant heating source

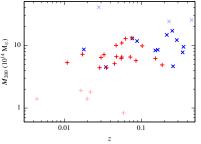
Steady state solutions Non-thermal emission Simulations

Sample selection

select 39 cool cores (CCs):

- brightest 23 CCs from X-ray flux-limited sample (HIFLUGCS) that are also in ACCEPT
- 10 high-resolution Chandra data (Vikhlinin+ 2006)
- 15 clusters with radio-mini halos (RMHs) (Giacintucci+ 2014)
- add Virgo + A2597
- ⇒ RMH clusters show selection bias towards high-z and being more massive (fixed surface brightness limit)

Jacob & C.P. (2016a)



Steady state solutions Non-thermal emission Simulations

Sample selection

select 39 cool cores (CCs):

- brightest 23 CCs from X-ray flux-limited sample (HIFLUGCS) that are also in ACCEPT
- 10 high-resolution Chandra data (Vikhlinin+ 2006)
- 15 clusters with radio-mini halos (RMHs) (Giacintucci+ 2014)
- add Virgo + A2597

- ⇒ RMH clusters show selection bias towards high-z and being more massive (fixed surface brightness limit)
- \Rightarrow study sub-sample that is unbiased in M₂₀₀ and entire sample

Steady state solutions Non-thermal emission Simulations

Governing equations

• conservation of mass, momentum, thermal and CR energy:

$$\begin{aligned} \frac{\mathrm{d}\rho}{\mathrm{d}t} + \rho \nabla \cdot \mathbf{v} &= 0\\ \rho \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} &= -\nabla \left(P_{\mathrm{th}} + P_{\mathrm{cr}}\right) - \rho \nabla \phi\\ \frac{\mathrm{d}e_{\mathrm{th}}}{\mathrm{d}t} + \gamma_{\mathrm{th}} \mathbf{e}_{\mathrm{th}} \nabla \cdot \mathbf{v} &= -\nabla \cdot \mathbf{F}_{\mathrm{th}} + \mathcal{H}_{\mathrm{cr}} - \rho \mathcal{L}\\ \frac{\mathrm{d}e_{\mathrm{cr}}}{\mathrm{d}t} + \gamma_{\mathrm{cr}} \mathbf{e}_{\mathrm{cr}} \nabla \cdot \mathbf{v} &= -\nabla \cdot \mathbf{F}_{\mathrm{cr}} - \mathcal{H}_{\mathrm{cr}} + S_{\mathrm{cr}} \end{aligned}$$

- Lagrangian derivative $d/dt = \partial/\partial t + \mathbf{v} \cdot \nabla$
- equations of state:

$$egin{aligned} P_{ ext{th}} &= (\gamma_{ ext{th}} - 1) eta_{ ext{th}} \ P_{ ext{cr}} &= (\gamma_{ ext{cr}} - 1) eta_{ ext{cr}} \end{aligned}$$

Steady state solutions Non-thermal emission Simulations

Governing equations

• conservation of mass, momentum, thermal and CR energy:

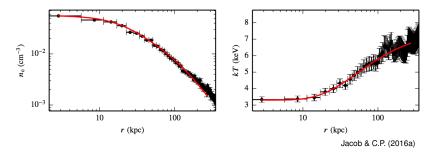
$$\begin{aligned} \frac{\mathrm{d}\rho}{\mathrm{d}t} + \rho \nabla \cdot \boldsymbol{v} &= 0\\ \rho \frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} &= -\nabla \left(P_{\mathrm{th}} + P_{\mathrm{cr}}\right) - \rho \nabla \phi\\ \frac{\mathrm{d}\boldsymbol{e}_{\mathrm{th}}}{\mathrm{d}t} + \gamma_{\mathrm{th}} \boldsymbol{e}_{\mathrm{th}} \nabla \cdot \boldsymbol{v} &= -\nabla \cdot \boldsymbol{F}_{\mathrm{th}} + \mathcal{H}_{\mathrm{cr}} - \rho \mathcal{L}\\ \frac{\mathrm{d}\boldsymbol{e}_{\mathrm{cr}}}{\mathrm{d}t} + \gamma_{\mathrm{cr}} \boldsymbol{e}_{\mathrm{cr}} \nabla \cdot \boldsymbol{v} &= -\nabla \cdot \boldsymbol{F}_{\mathrm{cr}} - \mathcal{H}_{\mathrm{cr}} + S_{\mathrm{cr}} \end{aligned}$$

- gravitational potential $\phi = -\frac{GM_s}{r} \ln \left(1 + \frac{r}{r_s}\right) + v_c^2 \ln \left(\frac{r}{r_0}\right)$
- radiative cooling $\rho \mathcal{L} = n_e^2 \left(\Lambda_I + \Lambda_b T^{1/2} \right)$

Steady state solutions Non-thermal emission Simulations

Governing equations

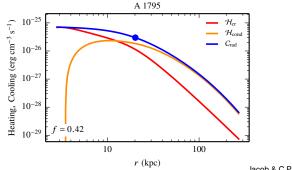
o conservation of mass, momentum, thermal and CR energy:


$$\begin{aligned} \frac{\mathrm{d}\rho}{\mathrm{d}t} + \rho \nabla \cdot \mathbf{v} &= 0\\ \rho \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} &= -\nabla \left(P_{\mathrm{th}} + P_{\mathrm{cr}}\right) - \rho \nabla \phi\\ \frac{\mathrm{d}e_{\mathrm{th}}}{\mathrm{d}t} + \gamma_{\mathrm{th}} \mathbf{e}_{\mathrm{th}} \nabla \cdot \mathbf{v} &= -\nabla \cdot \mathbf{F}_{\mathrm{th}} + \mathcal{H}_{\mathrm{cr}} - \rho \mathcal{L}\\ \frac{\mathrm{d}e_{\mathrm{cr}}}{\mathrm{d}t} + \gamma_{\mathrm{cr}} \mathbf{e}_{\mathrm{cr}} \nabla \cdot \mathbf{v} &= -\nabla \cdot \mathbf{F}_{\mathrm{cr}} - \mathcal{H}_{\mathrm{cr}} + S_{\mathrm{cr}} \end{aligned}$$

- thermal heat flux $F_{\text{th}} = -\kappa \nabla T$
- CR streaming flux $\mathbf{F}_{cr} = (e_{cr} + P_{cr})\mathbf{v}_{st}$ with $\mathbf{v}_{st} = -\mathbf{v}_{A} \frac{\nabla P_{cr}}{|\nabla P_{cr}|}$
- CR heating rate $\mathcal{H}_{cr} = -\mathbf{v}_{st} \cdot \nabla P_{cr}$

Steady state solutions Non-thermal emission Simulations

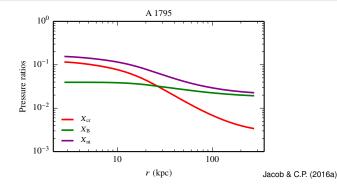
Case study A1795: density and temperature


- beautiful match of steady-state solutions to observed profiles
- pure NFW mass profile in A1795

Note: 3D model vs. projected 2D *kT* profiles Wish to X-ray community: update ACCEPT + include 3D *kT* profiles

Steady state solutions Non-thermal emission Simulations

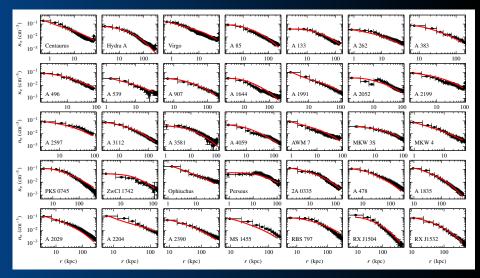
Case study A1795: heating and cooling


Jacob & C.P. (2016a)

- CR heating dominates in the center
- conductive heating takes over at larger radii, $\kappa = 0.42\kappa_{Sp}$
- $\mathcal{H}_{cr} + \mathcal{H}_{th} \approx C_{rad}$: modest mass deposition rate of 1 M_{\odot} yr⁻¹

Steady state solutions Non-thermal emission Simulations

Case study A1795: CR and B pressure ratios

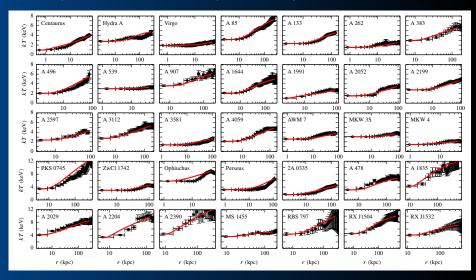


- define $X_{cr} = P_{cr}/P_{th}$, $X_B = P_B/P_{th}$, $X_{nt} = P_{nt}/P_{th}$
- $X_{cr} \approx const.$ in center: $\Delta \varepsilon_{th} = -\tau_A \mathbf{v}_{st} \cdot \nabla \mathbf{P}_{cr} \approx \mathbf{P}_{cr} = X_{cr} \mathbf{P}_{th}$
- adopt *B* model from Faraday rotation studies:

$$B = 10 \,\mu {
m G} imes \left({\it n} / 0.01 \, {
m cm}^{-3}
ight)^{0.5}$$

Steady state solutions Non-thermal emission Simulations

Gallery of solutions: density profiles

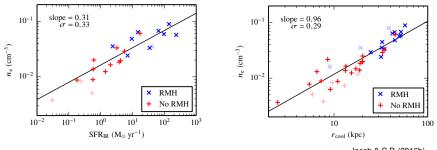


Christoph Pfrommer

Cosmic ray heating in cool core clusters

Steady state solutions Non-thermal emission Simulations

Gallery of solutions: temperature profiles

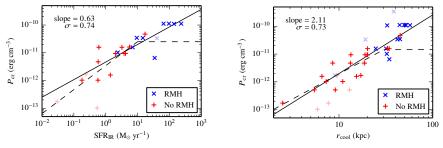


Christoph Pfrommer

Cosmic ray heating in cool core clusters

Steady state solutions Non-thermal emission Simulations

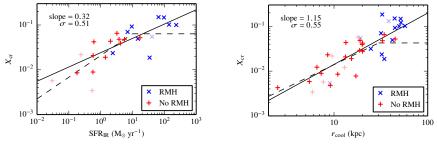
Steady state solutions: density correlations


Jacob & C.P. (2016b)

- tight correlation of gas density n_e(30 kpc) with SFR and with 1 Gyr cooling radius
- RMH clusters are on average denser, show larger SFRs and cooling radii

Steady state solutions Non-thermal emission Simulations

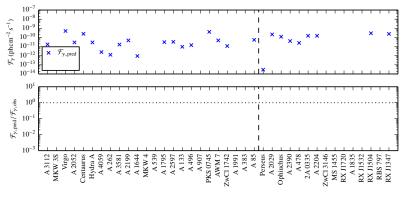
Steady state solutions: *P*_{cr} correlations


Jacob & C.P. (2016b)

- strong correlation of CR pressure P_{cr} with SFR and r_{cool}
- strongly cooling RMH clusters require larger CR heating rates, $\mathcal{H}_{cr} \propto P_{cr}$, and thus CR pressure values to balance cooling
- P_{cr} correlations significantly steeper than n_e correlations

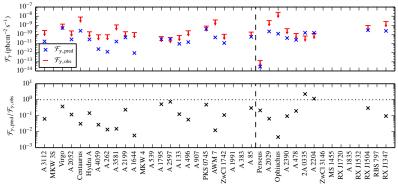
Steady state solutions Non-thermal emission Simulations

Steady state solutions: X_{cr} correlations


Jacob & C.P. (2016b)

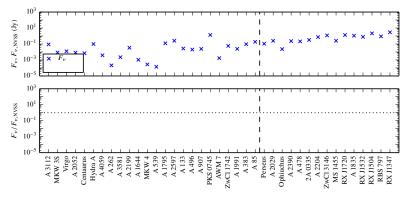
- remainder made up by correlation of CR-to-thermal pressure ratio $X_{cr} = P_{cr}/(nkT)$ with SFR and r_{cool}
- strongly cooling RMH clusters require not only larger P_{cr} but also larger X_{cr} to balance cooling

Steady state solutions Non-thermal emission Simulations


Hadronic gamma-ray emission

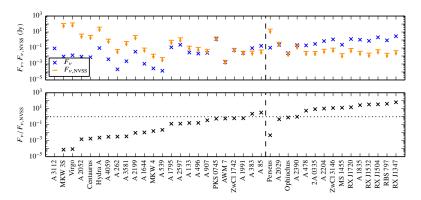
Steady state solutions Non-thermal emission Simulations

Hadronic gamma-ray emission: observational limits



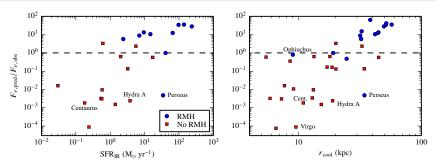
- predictions close to observational limits
- sensitivity not sufficient to be constraining

Steady state solutions Non-thermal emission Simulations


Hadronically induced radio emission

Steady state solutions Non-thermal emission Simulations

Hadronically induced radio emission: NVSS limits


• continuous sequence in $F_{\nu,\text{pred}}/F_{\nu,\text{NVSS}}$

- CR heating solution ruled out in radio mini halos
- CR heating viable solution for non-RMH clusters

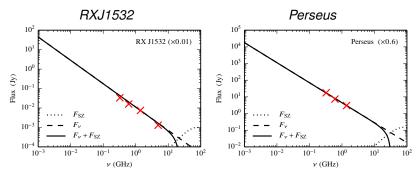
Steady state solutions Non-thermal emission Simulations

Self-regulated heating/cooling cycle in cool cores

Jacob & C.P. (2016b)

possibly CR-heated cool cores vs. radio mini halo clusters:

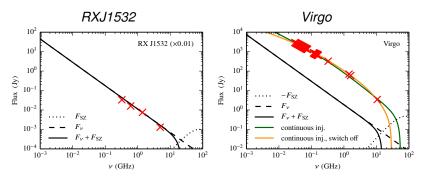
- simmering SF: CR heating is effectively balancing cooling
- abundant SF: heating/cooling out of balance


• $F_{\nu,\text{obs}} > F_{\nu,\text{pred}}$: strong radio source = abundant injection of CRs

 \Rightarrow predicting existence of radio micro halos in CR heated clusters

Steady state solutions Non-thermal emission Simulations

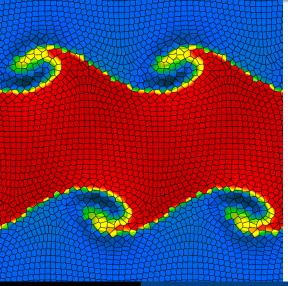
Radio mini halos


Jacob & C.P. (2016a)

- radio mini halos may be of hadronic origin: CR protons from AGN that have streamed outwards and cooled via Alfvén-wave excitation
- RXJ1532: dying radio mini halo Perseus: transitional object, was CR heated until recently

Steady state solutions Non-thermal emission Simulations

Predicting radio micro halos

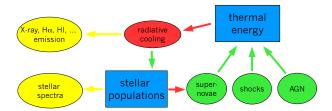

Jacob & C.P. (2016a)

- radio mini halos may be of hadronic origin: CR protons from AGN that have streamed outwards and cooled via Alfvén-wave excitation
- predicting radio micro halos of primary origin in CR-heated CCs: CR electrons that escaped from AGN; subdominant hadronic emission

Steady state solutions Non-thermal emission Simulations

Cosmological moving-mesh code AREPO (Springel 2010)

Christoph Pfrommer

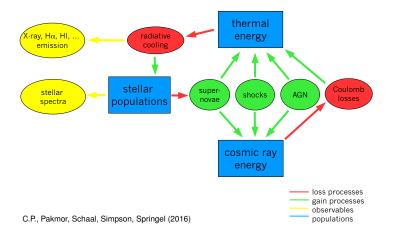

Cosmic ray heating in cool core clusters

Steady state solutions Non-thermal emission Simulations

Simulations – flowchart

ISM observables:

Physical processes in the ISM:

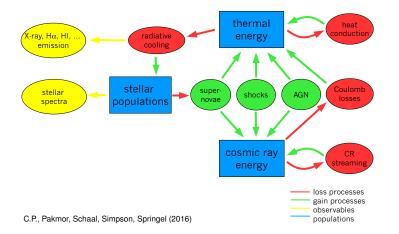

C.P., Pakmor, Schaal, Simpson, Springel (2016)

Steady state solutions Non-thermal emission Simulations

Simulations with cosmic ray physics

ISM observables:

Physical processes in the ISM:

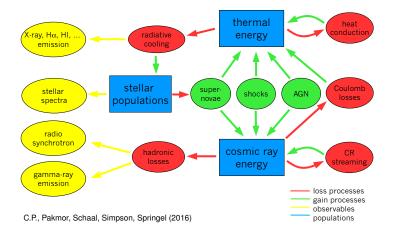


Steady state solutions Non-thermal emission Simulations

Simulations with cosmic ray physics

ISM observables:

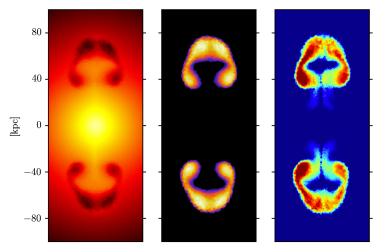
Physical processes in the ISM:



Steady state solutions Non-thermal emission Simulations

Simulations with cosmic ray physics

ISM observables:


Physical processes in the ISM:

Steady state solutions Non-thermal emission Simulations

Jet simulation: gas density, CR energy, B field

Weinberger+ in prep.

Steady state solutions Non-thermal emission Simulations

Conclusions on AGN feedback by cosmic-ray heating

cosmic-ray heating in M87:

- radio and γ-ray data of M87 imply CR mixing with dense cluster gas with a CR-to-thermal pressure ratio of X_{cr} = 0.3
- CR Alfvén wave heating balances radiative cooling on all scales within the central radio halo (r < 35 kpc)
- local thermal stability analysis predicts observed temperature floor at $kT \simeq 1$ keV

large sample of cool cores \Rightarrow self-regulation cycle

- Iow-density cool cores: possibly stably heated by cosmic rays
- radio mini halo clusters: cosmic-ray heating ruled out systems are strongly cooling and form stars at large rates
- predicting continuous sequence of diffuse radio emission in *all* cool cores: from radio micro to mini halos

Steady state solutions Non-thermal emission Simulations

Literature for the talk

AGN feedback by cosmic rays:

- Pfrommer, Toward a comprehensive model for feedback by active galactic nuclei: new insights from M87 observations by LOFAR, Fermi and H.E.S.S., 2013, ApJ, 779, 10.
- S. Jacob & C. Pfrommer, Cosmic ray heating in cool core clusters I: diversity of steady state solutions, 2016a, in prep.
- S. Jacob & C. Pfrommer, Cosmic ray heating in cool core clusters II: self-regulation cycle and non-thermal emission, 2016b, in prep.

Cosmic ray simulations with AREPO:

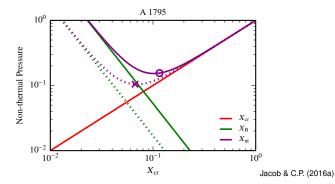
• Pfrommer, Pakmor, Schaal, Simpson, Springel, *Simulating cosmic ray physics on a moving mesh*, 2016, submitted.

Steady state solutions Non-thermal emission Simulations

CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtioN

Christoph Pfrommer

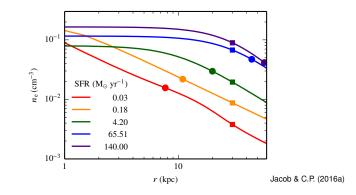
Cosmic ray heating in cool core clusters


Steady state solutions Non-thermal emission Simulations

Additional slides

Steady state solutions Non-thermal emission Simulations

Case study A1795: non-thermal pressure balance



- define $X_{cr} = P_{cr}/P_{th}$ and $X_B = P_B/P_{th}$
- CR heating rate: $\mathcal{H}_{cr} = -\boldsymbol{v}_{st} \cdot \boldsymbol{\nabla} \boldsymbol{P}_{cr} \propto X_B^{0.5} X_{cr}$
- non-thermal pressure at fixed heating rate:

$$X_{
m nt} \equiv \left. (X_B + X_{
m cr})
ight|_{\mathcal{H}_{
m cr}} = A X_{
m cr}^{-2} + X_{
m cr} \quad
ightarrow \quad X_{
m cr,min} = (2A)^{1/3} \quad imes _{
m HITS}$$

Steady state solutions Non-thermal emission Simulations

Steady state solutions: origin of density correlations

- tight correlation of gas density n_e(30 kpc) (squares) with SFR and with 1 Gyr cooling radius r_{cool} (circles)
- clusters with larger SFRs are on average denser and show larger r_{cool}:
 more cool gas available for star formation