The Physics and Cosmology of TeV Blazars

Christoph Pfrommer¹

in collaboration with

Avery E. Broderick, Phil Chang, Ewald Puchwein, Astrid Lamberts, Mohamad Shalaby, Volker Springel

¹Heidelberg Institute for Theoretical Studies, Germany

Jun 11, 2015 / Nonthermal Processes in Astrophysical Phenomena, Minneapolis

Motivation A new link between high-energy astrophysics and cosmological structure formation

Introduction to Blazars

- active galactic nuclei (AGN)
- propagating gamma rays
- plasma physics

Cosmological Consequences

- unifying blazars with AGN
- gamma-ray background
- thermal history of the Universe
- Lyman- α forest
- formation of dwarf galaxies

Active galactic nuclei Propagating γ rays Plasma instabilities

Active galactic nucleus (AGN)

- AGN: compact region at the center of a galaxy, which dominates the luminosity of its electromagnetic spectrum
- AGN emission is most likely caused by mass accretion onto a supermassive black hole and can also launch relativistic jets

Active galactic nuclei Propagating γ rays Plasma instabilities

Active galactic nucleus at a cosmological distance

Quasar 3C175 at $z \simeq 0.8$: jet extends 10⁶ light years across

- AGN: compact region at the center of a galaxy, which dominates the luminosity of its electromagnetic spectrum
- AGN emission is most likely caused by mass accretion onto a supermassive black hole and can also launch relativistic jets
- AGNs are among the most luminous sources in the universe
 → discovery of distant objects

Active galactic nuclei Propagating γ rays Plasma instabilities

relativistic jet

Unified model of active galactic nuclei

accretion disk

dusty torus

super-massive black hole

Christoph Pfrommer

The Physics and Cosmology of TeV Blazars

Active galactic nuclei Propagating γ rays Plasma instabilities

Unified model of active galactic nuclei

relativistic jet accretion disk dusty torus super-massive black hole

Blazar: jet aligned with line-of-sight

Christoph Pfrommer

The Physics and Cosmology of TeV Blazars

Active galactic nuclei Propagating γ rays Plasma instabilities

TeV gamma-ray observations

Christoph Pfrommer

The Physics and Cosmology of TeV Blazars

Active galactic nuclei Propagating γ rays Plasma instabilities

The TeV gamma-ray sky

There are several classes of TeV sources:

- Galactic pulsars, BH binaries, supernova remnants
- Extragalactic mostly blazars, two starburst galaxies

Active galactic nuclei Propagating γ rays Plasma instabilities

Annihilation and pair production

Active galactic nuclei Propagating γ rays Plasma instabilities

Annihilation and pair production

Active galactic nuclei Propagating γ rays Plasma instabilities

Inverse Compton cascades

Active galactic nuclei **Propagating** γ rays Plasma instabilities

Inverse Compton cascades

each TeV point source should also be a GeV point source!

What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray halo

What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray halo – **not seen!**

Active galactic nuclei Propagating γ rays Plasma instabilities

Inverse Compton cascades

Active galactic nuclei **Propagating** γ rays Plasma instabilities

Extragalactic magnetic fields?

Active galactic nuclei **Propagating** γ rays Plasma instabilities

Extragalactic magnetic fields?

- GeV point source diluted
 — weak "pair halo"
- stronger B-field implies more deflection and dilution, gamma-ray non-detection $\longrightarrow B \gtrsim 10^{-16} \,\text{G}$ primordial fields?

Active galactic nuclei **Propagating** γ rays Plasma instabilities

Extragalactic magnetic fields?

• problem for unified AGN model: no increase in comoving blazar density with redshift allowed (as seen in other AGNs) since other-wise, extragalactic GeV background would be overproduced!

Active galactic nuclei Propagating γ rays Plasma instabilities

What else could happen?

Active galactic nuclei **Propagating** γ rays Plasma instabilities

Plasma instabilities

 pair plasma beam propagating through the intergalactic medium

Active galactic nuclei Propagating γ rays Plasma instabilities

Plasma instabilities

• pair beam

intergalactic medium (IGM)

- this configuration is unstable to plasma instabilities
- characteristic frequency and length scale of the problem:

$$\omega_{
ho} = \sqrt{rac{4\pi e^2 n_e}{m_e}}, \qquad \lambda_{
ho} = \left. rac{c}{\omega_{
ho}} \right|_{ar{
ho}(z=0)} \sim 10^8 \, {
m cm}$$

Active galactic nuclei Propagating γ rays Plasma instabilities

Two-stream instability

consider wave-like perturbation in background plasma along the beam direction (Langmuir wave):

- initially homogeneous beam-e⁻: attractive (repulsive) force by potential maxima (minima)
- e^- attain lowest velocity in potential minima \rightarrow bunching up
- e^+ attain lowest velocity in potential maxima \rightarrow bunching up

Active galactic nuclei Propagating γ rays Plasma instabilities

Two-stream instability

consider wave-like perturbation in background plasma along the beam direction (Langmuir wave):

- beam-e⁺/e⁻ couple in phase with the background perturbation: enhances background potential
- stronger forces on beam- $e^+/e^-
 ightarrow$ positive feedback

• exponential wave-growth \rightarrow instability

- particles with v ≥ v_{phase}: pair momentum → plasma waves → growing modes: instability
- particles with $v \leq v_{\text{phase}}$: plasma wave momentum \rightarrow pairs \rightarrow Landau damping

Blazars	
Gamma-ray sky	
Structure formation	

Active galactic nuclei Propagating γ rays Plasma instabilities

Oblique instability

- k oblique to v_{beam}: real word perturbations don't choose "easy" alignment = ∑ all orientations
- oblique grows faster than two-stream: E-fields can easier deflect ultra-relativistic particles than change their parallel velocities (Nakar, Bret & Milosavlievic 2011)

Bret (2009), Bret+ (2010)

Active galactic nuclei Propagating γ rays Plasma instabilities

Beam physics – growth rates

Broderick, Chang, C.P. (2012), also Schlickeiser+ (2012)

- consider a light beam penetrating into relatively dense plasma
- maximum growth rate

$$\Gamma \simeq 0.4\,\gamma\,rac{\textit{n}_{
m beam}}{\textit{n}_{
m IGM}}\,\omega_{
m p}$$

- oblique instability beats inverse Compton cooling by factor 10-100
- **assume** that instability grows at *linear* rate up to saturation

Active galactic nuclei Propagating γ rays Plasma instabilities

Challenges to the Challenge

Challenge #1: inhomogeneous universe

Shalaby+ (in prep.)

universe is inhomogeneous

 → electron density changes as
 a function of position

 could lead to loss of resonance over length scale ≪ spatial growth length scale

 $\lambda \equiv \textit{V}_{phase} au_{growth}$ (Miniati & Elyiv 2012)

- plasma instabilities grow *locally*; *causality* ensures that information can only propagate with $v_{group} = 3v_{th,e}^2/v_{phase} \approx 1 \text{ km/s}$
 - \rightarrow no instability quenching!

Active galactic nuclei Propagating γ rays Plasma instabilities

Challenges to the Challenge

Challenge #2: induced scattering (non-linear Landau damping)

Chang+ (2014)

- we assume that the non-linear damping rate = linear growth rate
- wave-particle and wave-wave interactions need to be resolved
- using slow collisional scattering (reactive regime), Miniati & Elyiv (2012) claim that the nonlinear Landau damping rate is ≪ linear growth rate
- accounting for much faster collisionless scattering (kinetic regime) → powerful instability, faster than IC cooling

(Schlickeiser+ 2013, Chang+ 2014)

Active galactic nuclei Propagating γ rays Plasma instabilities

Challenges to the Challenge

Challenge #3: non-linear saturation

beam-plasma instability simulations: $\alpha = n_{\text{beam}}/n_{\text{IGM}},$ Sironi & Giannios (2013)

- *αγ* = 3 in simulation: beam energy density dominates background plasma
- αγ ~ 10⁻¹² in reality: background dominates by far
- extrapolation with Lorentz force argument:

$$rac{\Delta
ho_{ t beam, \perp}}{\Delta t} \sim e E_{\perp}$$

 however: simulations do not conserve energy: numerical heating may quench instability

Active galactic nuclei Propagating γ rays Plasma instabilities

TeV emission from blazars – a new paradigm

$$\gamma_{\text{TeV}} + \gamma_{\text{eV}} \rightarrow e^+ + e^- \rightarrow \begin{cases} \text{inv. Compton cascades} \rightarrow \gamma_{\text{GeV}} \\ \\ \text{plasma instabilities} \end{cases}$$

absence of $\gamma_{\rm GeV}{\rm 's}$ has significant implications for \ldots

- intergalactic magnetic field estimates
- unified picture of TeV blazars and quasars

Blazars Unified s Gamma-ray sky Blazar er Structure formation Gamma-

Implications for intergalactic magnetic fields

$$\gamma_{\rm TeV} + \gamma_{\rm eV} \rightarrow e^+ + e^- \rightarrow$$

inv. Compton cascades $\rightarrow \gamma_{GeV}$ plasma instabilities

- competition of rates:
 Γ_{IC} vs. Γ_{oblique}
- fraction of the pair energy lost to inverse-Compton on the CMB: f_{IC} = Γ_{IC}/(Γ_{IC} + Γ_{oblique})
- plasma instability dominates for more luminous blazars

Conclusions on B-field constraints from blazar spectra

- it is thought that TeV blazar spectra might constrain IGM B-fields
- this assumes that cooling mechanism is IC off the CMB + deflection from magnetic fields
- beam instabilities allow high-energy e⁺/e⁻ pairs to self scatter and/or lose energy
- isotropizes the beam no need for B-field
- \lesssim 1–10% of beam energy to IC CMB photons

 \rightarrow TeV blazar spectra are not suitable to measure IGM B-fields (if plasma instabilities saturate close to linear rate)!

Broderick, Chang, C.P. (2012), Schlickeiser, Krakau, Supsar (2013), Chang+ (2014)

Unified scenario Blazar evolution Gamma-ray background

TeV blazar luminosity density: today

- collect luminosity of all 23 TeV blazars with good spectral measurements
- account for the selection effects (sky coverage, duty cycle, galactic occultation, TeV flux limit)
- TeV blazar luminosity density is a scaled version (η_B ~ 0.2%) of that of quasars!

Broderick, Chang, C.P. (2012)

Unified scenario Blazar evolution Gamma-ray background

Unified TeV blazar-quasar model

Quasars and TeV blazars are:

- regulated by the same mechanism
- contemporaneous elements of a single AGN population: TeV-blazar activity does not lag quasar activity
- \rightarrow assume that they trace each other for all redshifts!

Broderick, Chang, C.P. (2012)

Unified scenario Blazar evolution Gamma-ray background

How many TeV blazars are there?

→ use all-sky survey of the GeV gamma-ray sky: *Fermi* gamma-ray space telescope

Unified scenario Blazar evolution Gamma-ray background

How many TeV blazars are there?

Hopkins+ (2007)

Unified scenario Blazar evolution Gamma-ray background

How many TeV blazars are there?

Hopkins+ (2007)

Unified scenario Blazar evolution Gamma-ray background

How many TeV blazars are there?

Hopkins+ (2007)

Unified scenario Blazar evolution Gamma-ray background

Redshift distribution of *Fermi* hard γ -ray blazars

 \rightarrow evolving (increasing) blazar population consistent with observed declining evolution (*Fermi* flux limit)!

Unified scenario Blazar evolution Gamma-ray background

$\log N - \log S$ distribution of *Fermi* hard γ -ray blazars

 \rightarrow predicted and observed flux distributions of hard Fermi blazars between 10 GeV and 500 GeV are indistinguishable!

Unified scenario Blazar evolution Gamma-ray background

How many TeV blazars are there?

Hopkins+ (2007)

Unified scenario Blazar evolution Gamma-ray background

TeV photon absorption by pair production

intrinsic and observed SEDs of blazars at z = 1

 $\rightarrow \gamma\text{-ray}$ attenuation by annihilation and pair producing on the EBL

inferred spectral index Γ_F for the spectra in the top panel; overlay of *Fermi* data on BL Lacs and non-BL Lacs (mostly FSRQs)

Blazars Unified scenario Gamma-ray sky Blazar evolution Structure formation Gamma-ray background

Extragalactic gamma-ray background

• intrinsic spectrum for a TeV blazar:

$$\frac{dN}{dE} = f\hat{F}_E = f\left[\left(\frac{E}{E_b}\right)^{\Gamma_l} + \left(\frac{E}{E_b}\right)^{\Gamma_b}\right]^{-1},$$

 $E_b = 1$ TeV is break energy, $\Gamma_h = 3$ is high-energy spectral index, Γ_l related to Γ_F , which is drawn from observed distribution

• extragalactic gamma-ray background (EGRB):

$$E^{2}\frac{dN}{dE}(E,z) = \frac{1}{4\pi}\int_{0}^{2}d\Gamma_{I}\int_{z}^{\infty}dV(z')\frac{\eta_{B}\tilde{\Lambda}_{Q}(z')\hat{F}_{E'}}{4\pi D_{L}^{2}}e^{-\tau_{E}(E',z')},$$

E' = E(1 + z') is gamma-ray energy at *emission*, $\tilde{\Lambda}_O$ is physical guasar luminosity density,

 $\eta_B \sim$ 0.2% is blazar fraction, au is optical depth

Blazars Unified so Gamma-ray sky Blazar evo Structure formation Gamma-r

Unified scenario Blazar evolution Gamma-ray background

Extragalactic gamma-ray background

 \rightarrow evolving population of hard blazars provides excellent match to latest EGRB by Fermi for E \gtrsim 3 GeV

Unified scenario Blazar evolution Gamma-ray background

Extragalactic gamma-ray background

 \rightarrow the signal at 10 (100) GeV is dominated by redshifts $z\sim$ 1.2 ($z\sim$ 0.6)

Properties of blazar heating The Lyman- α forest Dwarf galaxies

TeV emission from blazars – a new paradigm

$$\gamma_{\text{TeV}} + \gamma_{\text{eV}} \rightarrow e^+ + e^- \rightarrow \begin{cases} \text{inv. Compton cascades} \rightarrow \gamma_{\text{GeV}} \\ \\ \text{plasma instabilities} \rightarrow \text{IGM heating} \end{cases}$$

absence of γ_{GeV} 's has significant implications for . . .

- intergalactic magnetic field estimates
- unified picture of TeV blazars and quasars: explains Fermi's γ-ray background and blazar number counts

additional IGM heating has significant implications for ...

- thermal history of the IGM: Lyman- α forest
- late-time formation of dwarf galaxies

Blazars Properties of blazar heating Gamma-ray sky Structure formation

Blazar heating vs. photoheating

- total power from AGN/stars vastly exceeds the TeV power of blazars
- $T_{IGM} \sim 10^4$ K (1 eV) at mean density ($z \sim 2$)

$$arepsilon_{
m th}=rac{kT}{m_{
m p}c^2}\sim 10^{-9}$$

radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)

$$arepsilon_{
m rad} = \eta \, \Omega_{
m bh} \sim 0.1 imes 10^{-4} \sim 10^{-5}$$

• fraction of the energy energetic enough to ionize H i is ~ 0.1 :

$$arepsilon_{\text{UV}} \sim 0.1 arepsilon_{\text{rad}} \sim 10^{-6} \quad
ightarrow \quad kT \sim \text{keV}$$

- photoheating efficiency $\eta_{\rm ph} \sim 10^{-3} \rightarrow kT \sim \eta_{\rm ph} \varepsilon_{\rm UV} m_{\rm p} c^2 \sim {\rm eV}$ (limited by the abundance of H I/He II due to the small recombination rate)
- blazar heating efficiency $\eta_{\rm bh} \sim 10^{-3} \rightarrow kT \sim \eta_{\rm bh} \varepsilon_{\rm rad} m_{\rm p} c^2 \sim 10 \, {\rm eV}$ (limited by the total power of TeV sources)

Properties of blazar heating The Lyman- α forest Dwarf galaxies

Thermal history of the IGM

 Blazars
 Properties of blazar heating

 Gamma-ray sky
 The Lyman-α forest

 Structure formation
 Dwarf galaxies

Evolution of the temperature-density relation

no blazar heating

with blazar heating

Chang, Broderick, C.P. (2012)

- blazars and extragalactic background light are uniform:
 - \rightarrow blazar heating rate independent of density
 - → makes low density regions hot
 - ightarrow causes inverted temperature-density relation, $T \propto 1/\delta$

Properties of blazar heating The Lyman- α forest Dwarf galaxies

Blazars cause hot voids

 blazars completely change the thermal history of the diffuse IGM and late-time structure formation

Properties of blazar heating The Lyman- α forest Dwarf galaxies

Cosmological hydrodynamical simulations

- include predicted volumetric heating rate in cosmological hydrodynamical simulations
- study:
 - thermal properties of intergalactic medium
 - Lyman-α forest

Properties of blazar heating The Lyman- α forest Dwarf galaxies

Temperature-density relation

Puchwein, C.P., Springel, Broderick, Chang (2012)

Properties of blazar heating The Lyman- α forest Dwarf galaxies

Temperature-density relation: patchy blazar heating

 \rightarrow patchy blazar heating diversifies the thermal history of the IGM

Properties of blazar heating The Lyman- α forest Dwarf galaxies

Temperature-density relation: patchy blazar heating

 \rightarrow patchy blazar heating diversifies the thermal history of the IGM

Properties of blazar heating The Lyman- α forest Dwarf galaxies

The Lyman- α forest

Properties of blazar heating The Lyman- α forest Dwarf galaxies

The observed Lyman- α forest

Properties of blazar heating The Lyman- α forest Dwarf galaxies

The simulated Ly- α forest

Christoph Pfrommer The Physics and Cosmology of TeV Blazars

Properties of blazar heating The Lyman- α forest Dwarf galaxies

Optical depths and temperatures

Puchwein, C.P.+ (2012)

Redshift evolutions of effective optical depth and IGM temperature match data only with additional heating, e.g., provided by blazars!

Properties of blazar heating The Lyman- α forest Dwarf galaxies

Ly- α flux PDFs and power spectra

Christoph Pfrommer The Physics and Cosmology of TeV Blazars

Properties of blazar heating The Lyman- α forest Dwarf galaxies

Voigt profile decomposition

- decomposing Lyman- α forest into individual Voigt profiles
- allows studying the thermal broadening of absorption lines

Properties of blazar heating The Lyman- α forest Dwarf galaxies

Voigt profile decomposition – line width distribution

Properties of blazar heating The Lyman- α forest Dwarf galaxies

Lyman- α forest in a blazar heated Universe

improvement in modelling the Lyman- α forest is a direct consequence of the peculiar properties of blazar heating:

- heating rate independent of IGM density \rightarrow naturally produces the inverted $T-\rho$ relation that Lyman- α forest data demand
- recent and continuous nature of the heating is needed to match the redshift evolutions of all Lyman- α forest statistics
- magnitude of the heating rate required by Lyman- α forest data \sim the total energy output of TeV blazars (or equivalently $\sim 0.2\%$ of that of quasars)

Properties of blazar heating The Lyman- α forest Dwarf galaxies

"Missing satellite" problem in the Milky Way

Substructures in cold DM simulations much more numerous than observed number of Milky Way satellites!

Properties of blazar heating The Lyman- α forest **Dwarf galaxies**

Dwarf galaxy formation

- thermal pressure opposes gravitational collapse on small scales
- characteristic length/mass scale below which objects do not form
- hotter intergalactic medium → higher thermal pressure
 → higher Jeans mass:

$$M_J \propto rac{c_s^3}{
ho^{1/2}} \propto \left(rac{T_{
m IGM}^3}{
ho}
ight)^{1/2} \quad
ightarrow \quad rac{M_{J,
m blazar}}{M_{J,
m photo}} pprox \left(rac{T_{
m blazar}}{T_{
m photo}}
ight)^{3/2} \gtrsim 30$$

 \rightarrow blazar heating increases M_J by 30 over pure photoheating!

complications:

non-linear collapse,

delayed pressure response in expanding universe \rightarrow concept of "filtering mass" C.P., Chang, Broderick (2012)

 Blazars
 Properties of blaza

 Gamma-ray sky
 The Lyman- α fores

 Structure formation
 Dwarf galaxies

Dwarf galaxy formation suppressed

C.P., Chang, Broderick (2012)

blazar heating suppresses the formation of late-forming dwarfs within existing dark matter halos of masses < 10¹¹ M_☉
 → introduces new time and mass scale to galaxy formation!

Properties of blazar heating The Lyman- α forest **Dwarf galaxies**

When do dwarfs form?

isochrone fitting for different metallicities \rightarrow star formation histories

Properties of blazar heating The Lyman- α forest Dwarf galaxies

When do dwarfs form?

Christoph Pfrommer The Physics and Cosmology of TeV Blazars

 Blazars
 Properties of blazar heating

 Gamma-ray sky
 The Lyman-α forest

 Structure formation
 Dwarf galaxies

Milky Way satellites: formation history and abundance

Maccio+ (2010)

 blazar heating suppresses late satellite formation, may reconcile low observed dwarf abundances with CDM simulations

Properties of blazar heating The Lyman- α forest Dwarf galaxies

Conclusions on blazar heating

Blazar heating: TeV photons are attenuated by EBL; their kinetic energy \rightarrow heating of the IGM; it is *not* cascaded to GeV energies

- explains puzzles in gamma-ray astrophysics:
 - lack of GeV bumps in blazar spectra without IGM B-fields
 - *unified TeV blazar-quasar model* explains Fermi source counts and extragalactic gamma-ray background
- novel mechanism; dramatically alters thermal history of the IGM:
 - uniform and z-dependent preheating
 - quantitative self-consistent picture of high-z Lyman- α forest
- significantly modifies late-time structure formation:
 - suppresses late dwarf formation
 - void phenomenon, "missing satellites" (?)

Properties of blazar heating The Lyman- α forest Dwarf galaxies

Literature for the talk

- Broderick, Chang, Pfrommer, The cosmological impact of luminous TeV blazars I: implications of plasma instabilities for the intergalactic magnetic field and extragalactic gamma-ray background, ApJ, 752, 22, 2012.
- Chang, Broderick, Pfrommer, *The cosmological impact of luminous TeV blazars II: rewriting the thermal history of the intergalactic medium*, ApJ, 752, 23, 2012.
- Pfrommer, Chang, Broderick, The cosmological impact of luminous TeV blazars III: implications for galaxy clusters and the formation of dwarf galaxies, ApJ, 752, 24, 2012.
- Puchwein, Pfrommer, Springel, Broderick, Chang, *The Lyman-α forest in a blazar-heated Universe*, MNRAS, 423, 149, 2012.
- Broderick, Pfrommer, Chang, Puchwein, Implications of plasma beam instabilities for the statistics of the Fermi hard gamma-ray blazars and the origin of the extragalactic gamma-ray background, ApJ, 790, 137, 2014.
- Chang, Broderick, Pfrommer, Puchwein, Lamberts, Shalaby, The effect of nonlinear Landau damping on ultrarelativistic beam plasma instabilities, ApJ, 2014, 797, 110.
- Lamberts, Chang, Pfrommer, Puchwein, Broderick, Shalaby, Patchy blazar heating: diversifying the thermal history of the intergalactic medium, 2015, submitted, arXiv:1502.07980.

Properties of blazar heating The Lyman- α forest Dwarf galaxies

Additional slides

Empirical model for star formation histories (1)

Lu, Mo, Lu, Katz, et al. (2013): constructing merger tree-based model of galaxy formation that matches

- observed stellar mass function (different *z*)
- luminosity function of local cluster galaxies

 \rightarrow star formation histories of dark matter halos (different *z*)

Blazars
 Properties of blazar

 Gamma-ray sky
 The Lyman-α fores

 Structure formation
 Dwarf galaxies

Empirical model for star formation histories (2)

→ strong quenching of star formation efficiency for $z \le 2$ in low-mass halos ($M < 10^{11} h^{-1} M_{\odot}$) → blazar heating?

Blazars Gamma-ray sky Structure formation Properties of blazar heating The Lyman- α forest Dwarf galaxies

Galactic H I-mass function

- H I-mass function is too flat (i.e., gas version of missing dwarf problem!)
- photoheating and SN feedback too inefficient
- IGM entropy floor of $K \sim 15 \,\text{keV} \,\text{cm}^2$ at $z \sim 2 3$ successful!

