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Motivation

A new link between high-energy astrophysics and cosmological structure formation

@ Introduction to Blazars
o active galactic nuclei (AGN)
e propagating gamma rays
@ plasma physics

@ Cosmological Consequences

o unifying blazars with AGN

@ gamma-ray background

o thermal history of the Universe
o

]

Lyman-« forest
formation of dwarf galaxies

/ HITS
Christoph Pfrommer The Physics and Cosmology of TeV Blazars



Blazars Active galactic nuclei
Propagating ~ rays
Plasma instabilities

Active galactic nucleus (AGN)

@ AGN: compact region at the
center of a galaxy, which
dominates the luminosity of its
electromagnetic spectrum

@ AGN emission is most likely
caused by mass accretion onto a
supermassive black hole and can
also launch relativistic jets

Centaurus A

N/
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Active galactic nucleus at a cosmological distance

@ AGN: compact region at the
center of a galaxy, which
dominates the luminosity of its
electromagnetic spectrum

@ AGN emission is most likely
caused by mass accretion onto a
supermassive black hole and can
also launch relativistic jets

@ AGNs are among the most
luminous sources in the universe

Quasar 3C175 at z ~ 0.8:
jet extends 108 light years across « ;’:J
NHITS
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Unified model of active galactic nuclei

relativistic jet” :

"

accretion disk

dusty torus ‘

super—massive
black hole

Christoph Pfrommer The Physics and Cosmology of TeV Blazars



Blazars Active galactic nuclei
Propagating ~ rays
Plasma instabilities

Unified model of active galactic nuclei

relativistic jet” :

accretion disk

dusty torus ‘

super—massive
black hole

Blazar: jet aligned with Iine—of—sigh i
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TeV gamma-ray observations

VERITAS
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Blazars Active galactic nuclei

The TeV gamma-ray sky

There are several classes of TeV sources:
@ Galactic - pulsars, BH binaries, supernova remnants

@ Extragalactic - mostly blazars, two starburst galaxies

Source Types
[*] PWN

@ Binary XRB PSR Gamma
BIN

@ HBL IBL FRI FSRG
Blazar LBL AGN
(unknown type)

@ shell SNR/Molec. Cloud
Composite SNR
Superbubble

U Starburst

@ DARK UNID Other

@ uQuasar Star Forming
Region Globular Cluster

Cat. Var. Massive Star
Cluster BIN BL Lac

(class unclear) WR —
><]H|Ts
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Annihilation and pair production

o TeV blazar
< = W W\ =

extragalactic backgroud
light (infrared, eV)
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Annihilation and pair production

Vs = \/2EEgpL(1 — cos0) > 2m,c?
o TeV blazar
T——_
< -

extragalactic backgroud
light (infrared, eV)

Ay ~ (35...700) Mpc for z=1...0
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Inverse Compton cascades

cosmic microwave
background, 1073 eV

o TeV blazar
Gev T—e—_
< ==
extragalactic backgroud
light (infrared, eV)
Aic ~ Ay/1000 Ay ~ (35...700) Mpc for z=1...0
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Inverse Compton cascades

cosmic microwave
background, 1073 eV

o TeV blazar
Gev T—e—_
< ==
extragalactic backgroud
light (infrared, eV)
Aic ~ Ay/1000 Ay ~ (35...700) Mpc for z=1...0

— each TeV point source should also be a GeV point source!

%J HITS
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What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray

halo

10-11

10-12
expected cascade

emission

cm?s,

10-12

EF, [ere/

10-1t

10-2

ENBRRLLY e e AL ALY
1ES 0229+200

1ES 0347-121

1ES 1101-232

~

%{T"}v-l._l

My l‘l\ Ll ’

i~ TeV detections

1 intrinsic spectra

0
B [eV]

1011

1012 1018

Neronov & Vovk (2010)
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What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray
halo — not seen!

D T L A B A B L B AL B S |

E 1ES 0229+200 S,
N i » P \‘
[ \
expected cascade | Vil l “LITH~ TeV detections
emission w i
101
E IES 0347-121 E R
& § 4 intrinsic spectra
< % Z ]
S0 S
-
T N
N o | T h

exclusion 10
region

My l‘l\ Ll ’

108 100 101c 1011 1012 1012 NV
E [eV]
HITS

10-2

Neronov & Vovk (2010)
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Inverse Compton cascades

cosmic microwave
background, 1073 eV

o TeV blazar
Gev T—e—_
< ==
extragalactic backgroud
light (infrared, eV)
Aic ~ Ay/1000 Ay ~ (35...700) Mpc for z=1...0
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Extragalactic magnetic fields?

- TeV blazar

‘\NV\>.<

=

extragalactic backgroud
light (infrared, eV)
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Extragalactic magnetic fields?

- TeV blazar

‘\NV\>.<

extragalactic backgroud
light (infrared, eV)

« GeV point source diluted — weak "pair halo"

« stronger B-field implies more deflection and dilution,
gamma-ray non-detection — B > 1076 G - primordial fields?

\ %JHITS
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Extragalactic magnetic fields?

- TeV blazar

‘\NV\>.<

=

extragalactic backgroud
light (infrared, eV)

« problem for unified AGN model: no increase in comoving blazar
density with redshift allowed (as seen in other AGNSs) since other—
wise, extragalactic GeV background would be overproduced!

\ %JHITS
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What else could happen?

~ TeV blazar
< e VUV m ‘\NV\ ——

extragalactic backgroud
light (infrared, eV)
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Plasma instabilities

DE—

— pair plasma beam propagating
through the intergalactic medium

HITS
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Plasma instabilities

@ pair beam intergalactic medium (IGM)
et,e” ~< B
_ - p, e
et e ~< B
_ p, e
et e T
- p, e

@ this configuration is unstable to plasma instabilities
@ characteristic frequency and length scale of the problem:

47e2n, c
wp = _—, )\p =
me Wp

~ 108 cm

p(2=0) i";‘:\jHITS
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Two-stream instability

consider wave-like perturbation in background plasma along the
beam direction (Langmuir wave):

@ initially homogeneous beam-e—:
attractive (repulsive) force by potential maxima (minima)

@ ¢ attain lowest velocity in potential minima — bunching up
@ e* attain lowest velocity in potential maxima — bunching up

D

e, e

0]

e e /"XJHITS
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Two-stream instability

consider wave-like perturbation in background plasma along the
beam direction (Langmuir wave):

@ beam-et /e~ couple in phase with the background perturbation:
enhances background potential

@ stronger forces on beam-e* /e~ — positive feedback
@ exponential wave-growth — instability

D

e e /"XJHITS
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Two-stream instability: momentum transfer

@ particles with v 2 Vphase:
pair momentum — plasma waves — growing modes: instability

@ particles with v < Vphage:
plasma wave momentum — pairs — Landau damping /,XJHITS
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Blazars Active tic nuclei
99 /S
stabilities

Oblique instability

@ k oblique to vpeam: real word perturbations don’t choose “easy”
alignment = Y all orientations

@ oblique grows faster than two-stream: E-fields can easier deflect

ultra-relativistic particles than change their parallel velocities
(Nakar, Bret & Milosavljevic 2011)

—— Boam flow #

k//c/u)p

Beam

‘ 4
< AN A RO
Bret (2009), Bret+ (2010) ><JHITS
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Beam physics — growth rates

excluded for collective " @ consider a Iight beam
plasma phenomena

104 1\@ 108 107 penetrating into

; T ||m||‘ T HHII‘ TT H\HI‘ T ng 1 relat|ve|y dense plasma
— FZ= - 2
110 E {0 S @ maximum growth rate
:? 102 ;’ £ 0% Ny
E = 2 eam
2 10 b 110 L M~0.4~ wp
= ERN- Mam
o0 E - 102 o=
g 10 g E 5 . . -
5 Z = 10 — @ oblique instability beats
3 10°F S I 2 inverse Compton
10-6 C vl vl el 4 COOllng by faCtOr 10'100
102 10' 1 10 102 _ 3
E (TeV) @ assume that instability
grows at linear rate up
Broderick, Chang, C.P. (2012), also Schlickeiser+ (2012) to saturation N\ J
NHITS
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Challenges to the Challenge

Challenge #1: inhomogeneous universe

@ universe is inhomogeneous

/7 7
® %/ o — electron density changes as
5 /// - a function of position
. 04
“ W 02 ° .
B . = over length scale < spatial
* s growth length scale
20 oa A = VphaseTgrowth (Miniati & Elyiv 2012)
10 08 @ plasma instabilities grow locally,
-08 causality ensures that infor-
S fe = 6 mation can only propagate with

2
Vgroup = 3Vth79/Vphase ~1km/s

Shalaby+ (i . . . .
elaby (in prep.) — no instability quenching!

N

HITS
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Challenges to the Challenge

Challenge #2: induced scattering (non-linear Landau damping)

@ we assume that the non-linear
damping rate = linear growth rate

Tyt =12 -
& L0 W
{ (w*l“ \}'ﬁ} = @ wave-particle and wave-wave
] B interactions need to be resolved
t @ using
Tyt =3 (reactive regime), Miniati & Elyiv
(2012) claim that the nonlinear

1074 e e T e 0 Landau damping rate is < linear
— /g = 3 x 10717, Ty = 107, Nynodes = 300 growth rate
Wiol 10° 10° .
Dt @ accounting for much faster

collisionless scattering (kinetic

regime) — powerful instability,

faster than IC cooling

(Schlickeiser+ 2013, Chang+ 2014) : XJ
HITS

Christoph Pfrommer The Physics and Cosmology of TeV Blazars

Chang+ (2014)



Blazars Active galactic nuclei
Propagating ~ rays
Plasma instabilities

Challenges to the Challenge

Challenge #3: non-linear saturation

_ =800 0 o=l @ o~ = 3in simulation: beam
energy density dominates

2x10* 4x10* background plasma

- (*]
SQ background dominates by far
4
Z @ extrapolation with Lorentz force
argument:
ApPbeam, 1
At +

@ however:
simulations do not conserve
energy: numerical heating may
beam-plasma instability simulations: quench instability
HITS

o= nbeam/mGM, Sironi & Giannios (2013)
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TeV emission from blazars — a new paradigm

N inv. Compton cascades — qgev
Yev +Yev — € +€ —
plasma instabilities

absence of ygev’s has significant implications for . ..
@ intergalactic magnetic field estimates

@ unified picture of TeV blazars and quasars

HITS
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Unified scenario
Gamma-ray sky Blazar evolution
Gamma-ray background

Implications for intergalactic magnetic fields

N inv. Compton cascades — qgev
Yev+Yev — € +€ —
plasma instabilities

EL; (erg s') at z=0.1
104 1042 104 104 104 104
T T T

@ competition of rates: PR L B L R LA

MNc vs. roblique 3
@ fraction of the pair energy 107 \ 3

lost to inverse-Compton
on the CMB:

fic = Tic/(Mc + Toblique)
@ plasma instability

dominates for more
luminous blazars

fi(1—e™)

rz=1
10~ col vl il vl vl Y
10715 10714 101 10~z 10-u
EdN/dE (cm™? s7!)

vl
10-10

\ .>,\:\\[HITS

Broderick, Chang, C.P. (2012)
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Unified scenario
Gamma-ray sky Blazar evolution
Gamma-ray background

Conclusions on B-field constraints from blazar spectra

@ it is thought that TeV blazar spectra might constrain IGM B-fields

@ this assumes that cooling mechanism is IC off the CMB +
deflection from magnetic fields

@ beam instabilities allow high-energy et /e~ pairs to self scatter
and/or lose energy

@ isotropizes the beam — no need for B-field

@ < 1-10% of beam energy to IC CMB photons

— TeV blazar spectra are not suitable to measure IGM B-fields
(if plasma instabilities saturate close to linear rate)!
Broderick, Chang, C.P. (2012), Schlickeiser, Krakau, Supsar (2013), Chang+ (2014)
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Unified scenario
Gamma-ray sky Blazar evolution
Gamma-ray background

TeV blazar luminosity density: today

@ collect luminosity of all 23
TeV blazars with good
spectral measurements
§~ @ account for the selection
B effects (sky coverage,
5 duty cycle, galactic
LR ) . occultation, TeV flux limit)
EER . e TeV blazar luminosity
a4 ST ] density is a scaled
I e ] version (g ~ 0.2%) of
N S that of quasars!
38 40 42 44 46 48
log,4(L/erg st)
Broderick, Chang, C.P. (2012) JXJHlTs
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Unified scenario
Gamma-ray sky Blazar evolution
Gamma-ray background

Unified TeV blazar-quasar model

42 —
. Quasars and TeV blazars are:
i @ regulated by the same
= mechanism
g
= @ contemporaneous
0 elements of a single AGN
3 population: TeV-blazar
i T — NN activity does not lag
R P R N NN quasar activity
3 b ST R
- I 1 — assume that they trace
a ‘ pree ‘ 1 each other for all redshifts!
3 38 40 42 44 46 48
logq(L/erg ™)
Broderick, Chang, C.P. (2012) / X\JHITS
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Unified scenario
Gamma-ray sky Blazar evolution
Gamma-ray background

How many TeV blazars are there?

— use all-sky survey of
the GeV gamma-ray sky:
Fermi gamma-ray space
telescope

%J HITS
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Unified scenario
Gamma-ray sky Blazar evolution
Gamma-ray background

How many TeV blazars are there?

Hopkins+ (2007) N
j HITS
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Unified scenario
Gamma-ray sky Blazar evolution
Gamma-ray background

How many TeV blazars are there?

-7.0T T T T T
— 7.5} 2h \5\
& -7.5F o % .
© ! F
= -8.0_— .’.fj ":\ 1
o ! o[ >
. : f ?“
= -85F A
N i LY
s i Fermi hard R
8 -9.0 gamma-ray blazar
i counts
-9.5 L L N L
0 1 2 3 4 5 6
z
Hopkins+ (2007) S
N
\JHITS
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Unified scenario
Gamma-ray sky Blazar evolution
Gamma-ray background

How many TeV blazars are there?

-7.0 T T T T
Fermi extragalactic
gamma-ray background

Ty

"Z' -7.5
(=8
=
= -8.0r AN
By ] >
b ool A\
= -85F A
N i 1Y
2 i Fermi hard L
S -9.0f gamma-ray blazar ‘i
counts
-9.5 L L N L
0 1 2 3 4 5 6
z
Hopkins+ (2007) S
N
\JHITS
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Unified scenario
Gamma-ray sky Blazar evolution
Gamma-ray background

Redshift distribution of Fermi hard ~-ray blazars

e

1LAC, Abdo et al. 2010
2LAC, Ackermann et al. 2011

b

evolving hard gamma-ray blazars

~ /above the Fermi flux limit

By

dlog#,/dz
©
L B e e B (SR I
—

o
bt
o

(=)
N — j

]

|

-

|

1.5 2
Broderick, C.P.+ (2013)

— evolving (increasing) blazar population consistent with observed _
declining evolution (Fermi flux limit)! ,XJHITS
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Gamma-ray sky

Unified scenario
Blazar evolution
Gamma-ray background

log NV — log S distribution of Fermi hard ~-ray blazars

104

103

10?2

10

0.1

UL B ALY B R LAL B B R L

1

T T

Ll

T

1

T

Ll

T T T T T T

1

Ll

1

L

10712 10711 10710

F 45, (ph cm2 s71)

10-° 10-8

Broderick, C.P.+ (2013)
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— predicted and observed flux distributions of hard Fermi blazars
between 10 GeV and 500 GeV are indistinguishable!



Unified scenario
Gamma-ray sky Blazar evolution
Gamma-ray background

How many TeV blazars are there?

Fermi extragalactic
gamma-ray background

Fermi hard _
gamma-ray blazar "
counts

log[ ®(z, Mg < 27) ] [Mpc”]

Hopkins+ (2007) S
N
\Jst

ogy of TeV Blazars



Unified scenario
Gamma-ray sky Blazar evolution
Gamma-ray background

TeV photon absorption by pair production

10 o
e mumse ] intrinsic and observed SEDs
g 'E 3 ofblazarsat z = 1
™~ r T .
Z o1g 3 — 7-ray attenuation by an-
B o B 71 nihilation and pair producing
roos Eovid it oot Vvt oo o ONthe EBL
0.1 1 10 100 103 104 0%
}{e:“ "= "4 inferred spectral index e for
NS PR ; .
‘i .~ .. = 3 the spectrain the top panel;
o ’ 1 overlay of Fermi data on
34 BL Lacs and non-BL Lacs
L 1 (mostly FSRQs)
1.5 2
Broderick, C.P.+ (2013) ‘ >\J
NHITS
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Unified scenario
Gamma-ray sky Blazar evolution
Gamma-ray background

Extragalactic gamma-ray background

@ intrinsic spectrum for a TeV blazar:

(&) + (&)

Ep = 1TeV is break energy, I', = 3 is high-energy spectral index,

I, related to ', which is drawn from observed distribution
@ extragalactic gamma-ray background (EGRB):

/\ F/ A

E’ = E(1 4+ Z’) is gamma-ray energy at emission,
Aq is physical quasar luminosity density,
ng ~ 0.2% is blazar fraction, 7 is optical depth ,XJHITS
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Gamma-ray sky

Unified scenario
Blazar evolution
Gamma-ray background

Extragalactic gamma-ray background

= T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T TTTTTH

L Dominated by Abdo et al. (2010) 4
/T\ soft sources Ackermann et al. (in prep.)
7 100 % =
@ L P unabsorbed ]
© [ ii e absorbed by ]
D = ' "~ ~ _pair production " 1
1%} L ~a 4
> L N
[5} N
5 10-* | absorbed, after subtracting AN =
=) [ the resolved hard blazars, z < 0.3 \ q
C L ]
S N
=5 \
w \

\
= \
\
1075 L \HHH‘ L \HHH‘ L \HHH‘ L \HHH‘ L \HHH‘ L \\HHH
102 10! 1 10 102 103 10%
E (GeV) Broderick, C.P.+ (2013)

— evolving population of hard blazars provides excellent match to

latest EGRB by Fermifor E > 3 GeV

N/

HITS
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Unified scenario
Gamma-ray sky Blazar evolution
Gamma-ray background

Extragalactic gamma-ray background

FT \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T TTTITH
t Dominated by ® 00 FTTTIIE SRS
-~ soft sources 5 B0F &/ E
| = r 1
SV; 103 2 60 - ElE
w T 40F El
3 E ]
n 2 3
%] z i
=
[}
Z 10 =
= ]
T E sase e 4
S e i
z e
o R e
B e
10*5 1 \HHH‘ 1 \HHH‘ 1 \HHH‘ 1 \HHH‘ 1 \HHH‘ I
1077 107! 1 10 107 103 104

E (GeV) Broderick, C.P+ (2013)

— the signal at 10 (100) GeV is dominated by redshifts z ~ 1.2 ;
(z ~0.6) o

istoph P The Physics and Cosmology of TeV Blazars
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Properties of blazar heating
The Lyman-« forest
Structure formation Dwarf galaxies

TeV emission from blazars — a new paradigm

N inv. Compton cascades — qgev
Yev+Yev — € +€ —
plasma instabilities — IGM heating

absence of ygev’s has significant implications for . ..
@ intergalactic magnetic field estimates

@ unified picture of TeV blazars and quasars:
explains Fermi’s v-ray background and blazar number counts

additional IGM heating has significant implications for ...
@ thermal history of the IGM: Lyman-« forest

@ late-time formation of dwarf galaxies \k,iﬂ:JH”s

Christoph Pfrommer The Physics and Cosmology of TeV Blazars



Properties of blazar heating
The Lyman-« forest
Structure formation Dwarf galaxies

Blazar heating vs. photoheating

@ total power from AGN/stars vastly exceeds the TeV power of blazars
@ Tieu ~ 10* K (1 eV) at mean density (z ~ 2)

T -9
= —_ ~ 10
" me?

@ radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)
Erad = 1 Qpn ~ 0.1 x 1074 ~ 107°
@ fraction of the energy energetic enough to ionize H 1is ~ 0.1:
e ~0.16ag ~107%  — KT ~ keV

@ photoheating efficiency 7pn ~ 107°  — KT ~ nonh cuy MpC? ~ eV

(limited by the abundance of H I/He 11 due to the small recombination rate)

@ blazar heating efficiency non ~ 1072 — KT ~ 1pn erag MpC® ~ 10eV__

(limited by the total power of TeV sources) >\j
HITS
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Properties of blazar heating
The Lyman-« forest
Structure formation Dwarf galaxies

Thermal history of the IGM

blazar heating

10°

HI,Hel-/Hell-reionization -~ / )

| | temperature
&~ 10x higher
photoheating
10°5 10 5 2 1
1+z
C.P, Chang, Broderick (2012)
— increased temperature at mean density! ‘,XJHITS

Christoph Pfrommer
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Properties of blazar heating
The Lyman-« forest
Structure formation Dwarf g es

Evolution of the temperature-density relation

no blazar heating with blazar heating

10°

== Viel et al. (2009)

cee 2=05

10"

TK]

10"

0.1 1
1+6
Chang, Broderick, C.P. (2012)

1
146

@ blazars and extragalactic background light are uniform:
— blazar heating rate independent of density
— makes low density regions hot
— causes inverted temperature-density relation, T o 1/§ XJ
HITS
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Properties of blazar heating
The Lyman-« forest
Dwarf galaxies

Structure formation

Blazars cause hot voids

no blazar heating with blazar heating

10°

== Viel et al. (2009)

10!

0.1

10

1
140

Chang, Broderick, C.P. (2012)

@ blazars completely change the thermal history of the diffuse
IGM and late-time structure formation

\\/.><‘;JHITS
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Properties of blazar heating
The Lyman-« forest
Structure formation Dwarf galaxies

Cosmological hydrodynamical simulations

@ include predicted volumetric
heating rate in cosmological
hydrodynamical simulations

@ study:

e thermal properties of
intergalactic medium
e Lyman-« forest

HITS
istoph Pfrommer The Physics and Cosmology of TeV Blazars



Properties of blazar heating
The Lyman-« forest
Dwarf galaxies

Temperature-density relation

Structure formation

no blazar heating intermediate blazar heating

i}

log,o(7/K)

% a o~
/o . ‘ :
33 e Viel et al. 2009, F=0.1-0.8 log,o(Myin/(h™'M:)) B
s Viel et al. 2009, F=0-0.9 56 78 910
3.0 L 1 L 1 I I | | | |
-2 -1 0 1 2 3 -2 -1 0

1 2 3
logio(p/{P))

Puchwein, C.P., Springel, Broderick, Chang (201 2)\ ><J
HITS
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Properties of blazar heating
The Lyman-« forest
Structure formation Dwarf galaxies

Temperature-density relation: patchy blazar heating

107

11.0 11.0
05 108 105
10.0 10.0
-
05 2 4
&
9.0 o0
85 10t 5
8.0 0
]
z W0 g 107 107 107 10°
rle plP

Lamberts, Chang, C.P., Puchwein, Broderick, Shalaby (2015)

— patchy blazar heating diversifies the thermal history of the IGM ><J
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Temperature-density relation: patchy blazar heating
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The observed Lyman-« forest
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The simulated Ly-« forest
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Optical depths and temperatures
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Redshift evolutions of effective optical depth and IGM temperature
match data only with additional heating, e.g., provided by blazars! >\j
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Ly-a flux PDFs and power spectra
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Voigt profile decomposition
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@ decomposing Lyman-« forest into individual Voigt profiles

@ allows studying the thermal broadening of absorption lines
HITS
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Voigt profile decomposition — line width distribution
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Lyman-« forest in a blazar heated Universe

improvement in modelling the Lyman-« forest is a direct consequence
of the peculiar properties of blazar heating:

@ heating rate independent of IGM density — naturally produces
the inverted T—p relation that Lyman-« forest data demand

@ recent and continuous nature of the heating is needed to match
the redshift evolutions of all Lyman-« forest statistics

@ magnitude of the heating rate required by Lyman-« forest data
~ the total energy output of TeV blazars (or equivalently ~ 0.2%
of that of quasars)

HITS
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Dwarf galaxy formation

@ thermal pressure opposes gravitational collapse on small scales
@ characteristic length/mass scale below which objects do not form

@ hotter intergalactic medium — higher thermal pressure
— higher Jeans mass:

1/2

3 3/2

MJ x ?22 x TIGM N MJ,bIazar ~ (Tblazar) Z 30
P / P MJ,photo 7-photo

— blazar heating increases M, by 30 over pure photoheating!

@ complications:
non-linear collapse,
delayed pressure response in expanding universe — concept of
“filtering mass” .
C.P, Chang, Broderick (2012) /,XJHITS
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Dwarf galaxy formation suppressed

C.P, Chang, Broderick (2012)

@ blazar heating suppresses the formation of late-forming dwarfs
within existing dark matter halos of masses < 10'" M, .
— introduces new time and mass scale to galaxy formation! /,xjms
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When do dwarfs form?
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isochrone fitting for different metallicities — star formation histories >\j
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Milky Way satellites: formation history and abundance

satellite formation time satellite luminosity function
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@ blazar heating suppresses late satellite formation, may reconcile
low observed dwarf abundances with CDM simulations >\j
~ NHITS
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Conclusions on blazar heating

Blazar heating: TeV photons are attenuated by EBL; their kinetic
energy — heating of the IGM; it is not cascaded to GeV energies

@ explains puzzles in gamma-ray astrophysics:

e lack of GeV bumps in blazar spectra without IGM B-fields
e unified TeV blazar-quasar model explains Fermi source
counts and extragalactic gamma-ray background

@ novel mechanism; dramatically alters thermal history of the IGM:

e uniform and z-dependent preheating
e quantitative self-consistent picture of high-z Lyman-« forest

@ significantly modifies late-time structure formation:

@ suppresses late dwarf formation
e void phenomenon, “missing satellites” (?)

HITS
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Additional slides
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Empirical model for star formation histories (1)

Lu, Mo, Lu, Katz, et al. (2013): wbE. T e
constructing merger tree-based \ Popasce 08
model of galaxy formation that _ 0 F
@©
matches = 10°
@ observed stellar mass 2 102 i
function (different z) Y
. . . S 10'f
@ luminosity function of local 3
cluster galaxies 10° f
— star formation histories of 10
L

dark matter halos (different z) 14

M, - 5logyq(h)

Lu+ (2013)

HITS
istoph Pfrommer The Physics and Cosmology of TeV Blazars



Properties of blazar heating
The Lyman-« forest
Structure formation Dwarf galaxies

Empirical model for star formation histories (2)
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— strong quenching of star formation efficiency for z < 2 in low-mass __

halos (M < 10" h~"M) — blazar heating? -

ristoph Pfrommer The Physics and Cosmology of TeV Blazars



Structure formation

Galactic H I-mass function
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Mo+ (2005)
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@ H I-mass function is too flat (i.e., gas version of missing dwarf problem!)

@ photoheating and SN feedback too inefficient

@ IGM entropy floor of K ~ 15keV cm? at z ~ 2 — 3 successfull

HITS
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