Non-thermal processes in galaxy clusters – How reliable is the Sunyaev-Zel’dovich effect?

Christoph Pfrommer

in collaboration with

Nick Battaglia, Jon Sievers, Dick Bond,
Anders Pinzke, Torsten Enßlin, Volker Springel

1 Canadian Institute for Theoretical Astrophysics, Canada
2 Stockholm University, Sweden
3 Max-Planck Institute for Astrophysics, Germany

Mar 7, 2009 / CIfAR meeting, Mont-Tremblant
Outline

1. Introduction and motivation
 - Observations
 - The big questions
 - Cosmological simulations

2. Galaxy cluster thermodynamics
 - Cosmological galaxy cluster simulations
 - Cosmic ray acceleration and transport
 - Effect on the Sunyaev-Zel’dovitch effect

3. Non-thermal emission from clusters
 - General picture
 - Cluster radio halos
 - High-energy γ-ray emission
Outline

1. Introduction and motivation
 - Observations
 - The big questions
 - Cosmological simulations

2. Galaxy cluster thermodynamics
 - Cosmological galaxy cluster simulations
 - Cosmic ray acceleration and transport
 - Effect on the Sunyaev-Zel’dovich effect

3. Non-thermal emission from clusters
 - General picture
 - Cluster radio halos
 - High-energy γ-ray emission
Shocks in galaxy clusters

1E 0657-56 ("Bullet cluster")
(X-ray: NASA/CXC/CfA/Markevitch et al.; Optical: NASA/STScI; Magellan/U.Arizona/Clowe et al.; Lensing: NASA/STScI; ESO WFI; Magellan/U.Arizona/Clowe et al.)

Abell 3667
(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)
High-energy astrophysics in galaxy clusters

- understanding the **non-thermal pressure distribution** from cosmic rays, turbulence: what is the bias on the SZ effect?
- consistent picture of non-thermal processes in galaxy clusters (radio, soft/hard X-ray, γ-ray emission)
 → illuminating the **process of structure formation**
 → history of individual clusters: **cluster archeology**
- **nature of dark matter**: annihilation signal vs. cosmic ray (CR) induced γ-rays
- **fundamental plasma physics**:
 - diffusive shock acceleration in high-β plasmas
 - origin and evolution of large scale magnetic fields
 - nature of turbulent models
Radiative simulations – flowchart

Cluster observables:
- Sunyaev-Zeldovich effect
- X-ray emission
- galaxy spectra

Physical processes in clusters:
- Stellar populations
- Radiative cooling
- Thermal energy
- Supernovae
- Shocks

CP, Enßlin, Springel (2008)
Radiative simulations with cosmic ray (CR) physics

Cluster observables:
- Sunyaev-Zeldovich effect
- X-ray emission
- Galaxy spectra
- Radio synchrotron
- Gamma-ray emission

Physical processes in clusters:
- Radiative cooling
- Stellar populations
- Supernovae
- Shocks
- Cosmic ray energy
- Coulomb losses
- Hadronic losses

Loss processes
Gain processes
Observables
Populations

CP, Enßlin, Springel (2008)
Hadronic cosmic ray proton interaction

Christoph Pfrommer
Non-thermal processes in galaxy clusters
Introduction and motivation
Galaxy cluster thermodynamics
Non-thermal emission from clusters

Observations
The big questions
Cosmological simulations

Radiative simulations with cosmic ray (CR) physics

Cluster observables:
- Sunyaev-Zeldovich effect
- X-ray emission
- galaxy spectra
- radio synchrotron
- gamma-ray emission

Physical processes in clusters:
- thermal energy
- radiative cooling
- stellar populations
- supernovae
- shocks
- Coulomb losses
- cosmic ray energy
- hadronic losses

CP, Enßlin, Springel (2008)
Radiative simulations with extended CR physics

Cluster observables:
- Sunyaev-Zeldovich effect
- X-ray emission
- Galaxy spectra
- Radio synchrotron
- Gamma-ray emission

Physical processes in clusters:
- Radiative cooling
- Stellar populations
- Supernovae
- Shocks
- AGN
- Coulomb losses
- Cosmic ray energy
- Hadronic losses
- CR diffusion
- Heat conduction

Loss processes (red)
Gain processes (green)
Observables (yellow)
Populations (blue)

CP, Enßlin, Springel (2008)
Introduction and motivation

Observations
The big questions
Cosmological simulations

Galaxy cluster thermodynamics

Cosmological galaxy cluster simulations
Cosmic ray acceleration and transport
Effect on the Sunyaev-Zel'dovich effect

Non-thermal emission from clusters
General picture
Cluster radio halos
High-energy γ-ray emission
Mass weighted temperature

\[\langle T \rho_{\text{gas}} \rangle / \langle \rho_{\text{gas}} \rangle \,[K] \]
Mach number distribution weighted by $\varepsilon_{\text{diss}}$
Mach number distribution weighted by $\varepsilon_{CR, inj}$
Mach number distribution weighted by $\epsilon_{\text{CR, inj}}(q > 30)$
Non-thermal processes in galaxy clusters

CR pressure P_{CR}
Relative CR pressure $P_{\text{CR}}/P_{\text{total}}$
Relative CR pressure P_{CR}/P_{total}

![Graph showing the relative CR pressure P_{CR}/P_{total} in a galaxy cluster. The graph plots the relative CR pressure against the gas density, with a color scale ranging from 10^{-4} to 10^{2}.](image)
CR phase-space diagram: final distribution @ $z = 0$
Influence of CR pressure and turbulence on $M_{\text{hydrostatic}}$

$\rho_{\text{gas}}^{-1} \frac{dP_{\text{tot}}}{dr} = -\frac{GM(<r)}{r^2}$, where $P_{\text{tot}} = P_{\text{th}} + P_{\text{nth}}$, CP in prep.
Influence of cooling, star formation and CRs on $P(r)$

\[y \propto \int \frac{dV}{P_{e,th}} \]

CP et al. 2007; Battaglia, Bond, CP, Sievers in prep.

cosmological galaxy cluster simulations
non-radiative simulations
radiative simulations
Influence of AGN feedback on the SZ effect

→ AGN feedback lowers the central Compton-y parameter and pushes the gas beyond R_{vir} (importance at high-z!)

Sijacki, CP, Springel, Enßlin 2008
Take home messages (1)

1. Non-radiative simulations overestimate central pressure by a factor of ~ 10 and the total Compton-y parameter by $\sim 33\%$
 - Transforming baryons into stars
 - Radiative cooling removes low-entropy ($S \sim T/\rho^{2/3}$) gas which is replaced by high-S gas that has a lower initial pressure $P \sim S \rho^{5/3}$

2. Feedback by CRs, galactic winds modify the SZ effect only on the per cent level

3. Total Compton-y dominated by the exterior parts (uncertainties in cores less severe, apart from integral effect on overall gas fraction), but turbulence effects on the order of $\sim 10 – 20\%$

→ Huge effort to investigate these problems and its influence on the C_ℓ’s systematically using large cosmological box simulations.
Outline

1. Introduction and motivation
 - Observations
 - The big questions
 - Cosmological simulations

2. Galaxy cluster thermodynamics
 - Cosmological galaxy cluster simulations
 - Cosmic ray acceleration and transport
 - Effect on the Sunyaev-Zel’dovich effect

3. Non-thermal emission from clusters
 - General picture
 - Cluster radio halos
 - High-energy γ-ray emission
Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Energy sources:
- Kinetic energy from structure formation
- Supernovae & active galactic nuclei

Plasma processes:
- Turbulent cascade & plasma waves
- Shock waves
Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Energy sources:
- Kinetic energy from structure formation
- Supernovae & active galactic nuclei

Plasma processes:
- Turbulent cascade & plasma waves
- Shock waves
- CR protons

Relativistic particle pop.:
- Re-acceleration CR electrons
- Primary CR electrons
- Secondary CR electrons

hadronic reaction
Multi messenger approach for non-thermal processes

Relativistic populations and radiative processes in clusters:

Energy sources:
- kinetic energy from structure formation
- supernovae & active galactic nuclei

Plasma processes:
- turbulent cascade & plasma waves
- shock waves
- CR protons

Relativistic particle pop.:
- re-acceleration CR electrons
- primary CR electrons
- secondary CR electrons

Observational diagnostics:
- radio synchrotron emission
- IC: hard X-ray & gamma-ray emission

Christoph Pfrommer
Non-thermal processes in galaxy clusters
Relativistic populations and radiative processes in clusters:

Energy sources:
- Kinetic energy from structure formation
- Supernovae & active galactic nuclei

Plasma processes:
- Turbulent cascade & plasma waves
- Shock waves
- CR protons

Relativistic particle pop.:
- Re-acceleration CR electrons
- Primary CR electrons
- Secondary CR electrons

Observational diagnostics:
- Radio synchrotron emission
- IC: hard X-ray & gamma-ray emission
- Gamma-ray emission

Multi messenger approach for non-thermal processes

Christoph Pfrommer
Non-thermal processes in galaxy clusters
Which one is the simulation/observation of A2256?

- **red/yellow**: thermal X-ray emission,
- **blue/contours**: 1.4 GHz radio emission with giant radio halo and relic

Christoph Pfrommer
Non-thermal processes in galaxy clusters
Observation – simulation of A2256

Clarke & Enßlin (2006)

CP, Battaglia, Pinzke (2008 in prep.)

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
Cluster radio emission varies with dynamical stage of a cluster:

- Cluster relaxes and develops cool core: radio mini-halo develops due to hadronically produced CR electrons, magnetic fields are adiabatically compressed (cooling gas triggers radio mode feedback of AGN that outshines mini-halo → selection effect).

- Cluster experiences major merger: two leading shock waves are produced that become stronger as they break at the shallow peripheral cluster potential → shock-acceleration of primary electrons and development of radio relics.

- Generation of morphologically complex network of virializing shock waves. Lower sound speed in the cluster outskirts lead to strong shocks → irregular distribution of primary electrons, MHD turbulence amplifies magnetic fields.

- Giant radio halo develops due to (1) boost of the hadronically generated radio emission in the center (2) irregular radio ‘gischt’ emission in the cluster outskirts.
Cluster radio emission varies with dynamical stage of a cluster:

- Cluster relaxes and develops cool core: radio mini-halo develops due to hadronically produced CR electrons, magnetic fields are adiabatically compressed (cooling gas triggers radio mode feedback of AGN that outshines mini-halo → selection effect).

- Cluster experiences major merger: two leading shock waves are produced that become stronger as they break at the shallow peripheral cluster potential → shock-acceleration of primary electrons and development of radio relics.

- Generation of morphologically complex network of virializing shock waves. Lower sound speed in the cluster outskirts lead to strong shocks → irregular distribution of primary electrons, MHD turbulence amplifies magnetic fields.

- Giant radio halo develops due to (1) boost of the hadronically generated radio emission in the center (2) irregular radio ‘gischt’ emission in the cluster outskirts.
Non-thermal emission from clusters
Exploring the memory of structure formation

- **primary, shock-accelerated CR electrons** resemble current accretion and merging shock waves
- **CR protons/hadronically produced CR electrons** trace the time integrated non-equilibrium activities of clusters that is modulated by the recent dynamical activities

How can we read out this information about non-thermal populations? → new era of multi-frequency experiments, e.g.:

- **GMRT, LOFAR, MWA, LWA, SKA**: interferometric array of radio telescopes at low frequencies ($\nu \approx (15 - 240) \text{ MHz}$)
- **Simbol-X/NuSTAR**: future hard X-ray satellites ($E \approx (1 - 100) \text{ keV}$)
- **Fermi γ-ray space telescope** ($E \approx (0.1 - 300) \text{ GeV}$)
- **Imaging air Čerenkov telescopes** ($E \approx (0.1 - 100) \text{ TeV}$)
Non-thermal emission from clusters
Exploring the memory of structure formation

- Primary, shock-accelerated CR electrons resemble current accretion and merging shock waves.
- CR protons/hadronically produced CR electrons trace the time integrated non-equilibrium activities of clusters that is modulated by the recent dynamical activities.

How can we read out this information about non-thermal populations? → New era of multi-frequency experiments, e.g.:

- **GMRT, LOFAR, MWA, LWA, SKA**: interferometric array of radio telescopes at low frequencies ($\nu \approx (15 - 240)$ MHz)
- **Simbol-X/NuSTAR**: future hard X-ray satellites ($E \approx (1 - 100)$ keV)
- **Fermi γ-ray space telescope**: ($E \approx (0.1 - 300)$ GeV)
- **Imaging air Čerenkov telescopes**: ($E \approx (0.1 - 100)$ TeV)
The quest for high-energy γ-ray emission from clusters
Multi-messenger approach towards fundamental astrophysics

1. complements current non-thermal observations of galaxy clusters in radio and hard X-rays:
 - identifying the nature of emission processes
 - unveiling the contribution of cosmic ray protons

2. elucidates the nature of dark matter:
 - disentangling annihilation signal vs. CR induced γ-rays
 - spectral and morphological γ-ray signatures \rightarrow DM properties

3. probes plasma astrophysics such as macroscopic parameters for diffusive shock acceleration
Introduction and motivation
Galaxy cluster thermodynamics
Non-thermal emission from clusters

Hadronic γ-ray emission, $E_\gamma > 100$ GeV

Christoph Pfrommer

Non-thermal processes in galaxy clusters
Inverse Compton emission, $E_{IC} > 100$ GeV

Christoph Pfrommer

Non-thermal processes in galaxy clusters
Introduction and motivation
Galaxy cluster thermodynamics
Non-thermal emission from clusters

Total γ-ray emission, $E_\gamma > 100$ GeV

$S_{\gamma}(100 \text{ GeV}, 100 \text{ TeV}) \left[\frac{\gamma}{\text{cm}^2 \cdot \text{s}^{-1} \cdot h_{70}^{-3}} \right]$
Universal CR spectrum in clusters

Normalized CR spectrum shows universal concave shape → governed mainly by hierarchical structure formation and adiabatic CR transport processes. (Pinzke & CP, in prep.)

→ very promising for disentangling the dark matter annihilation signal!
Gamma-ray scaling relations

Scaling relation + complete sample of the brightest X-ray clusters (extended HIFLUCGS) → predictions for Fermi (CP 2008)
Predicted cluster sample for *Fermi*

![Graph showing predicted cluster sample for Fermi with various clusters and their corresponding gamma-ray flux densities.](image)
In contrast to the thermal plasma, the non-equilibrium distributions of CRs preserve the information about their injection and transport processes and provide thus a unique window of current and past structure formation processes!

1. **Cosmological hydrodynamical simulations** are indispensable for understanding non-thermal processes in galaxy clusters → illuminating the process of structure formation

2. **Multi-messenger approach** including radio synchrotron, hard X-ray IC, and HE γ-ray emission:
 - fundamental plasma physics: diffusive shock acceleration, large scale magnetic fields, and turbulence
 - nature of dark matter
 - gold sample of clusters for precision cosmology

