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Gamma-ray emission The gamma-ray sky
The main questions
Gamma-ray emission

The TeV gamma-ray sky

There are several classes of TeV sources:
@ Galactic - pulsars, BH binaries, supernova remnants

@ Extragalactic - mostly blazars, two starburst galaxies

VHEy-ray sources
VHE y-ray Sky Map s50° §
(E 100 GeV)

W Flst Specium Radio Quasar
& Rado Galy

Staburst galary
Pukar Wind Nebula
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Gamma-ray emission The gamma-ray sky
The main questions
Gamma-ray emission

The GeV gamma-ray sky

Fermi two-year all-sky map

Credit: NASA/DOE/Fermi/LAT Collaboration

Photon energies > 1 GeV
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Gamma-ray emission The gamma-ray sky
The main questions
Gamma-ray emission

The GeV gamma-ray sky: decomposition

Point Sources

Anisotropic features on large angular scales
associated with Galactic diffuse emission
and resolved sources

X\J HITS
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Gamma-ray emission The gamma-ray sky
The main questions
Gamma-ray emission

The Questions

Probing physics and cosmology with the extragalactic gamma-ray sky

@ which objects can we see?
active galactic nuclei (blazars, radio galaxies), starburst
galaxies, gamma-ray bursts, diffuse radiation
— astronomy: characterization, population studies

@ what underlying physics can we probe?
most extreme physics laboratories of the cosmos:
particle acceleration, magnetic fields (origin, amplification)
— high-energy astrophysics, plasma physics

@ what fundamental physics can we hope to learn?
galaxy formation, dark matter, structure of space time
— structure formation, particle physics, cosmology
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Gamma-ray emission The gamma-ray sky
The main questions
Gamma-ray emission

Gamma-ray emission induced by cosmic rays

Complementary information to cosmic rays: gamma rays point back to origin

hadronic processes: leptonic processes:
@ pion decay: @ inverse Compton:
0 * *
: ™ =y e +y—e+y
@ photo-meson production: @ synchrotron radiation:
0 * *
/ ™ =y e"+B—-e+B+xy
Pty — { nt - et 43y
@ Bethe-Heitler pair @ bremsstrahlung:
production: _ _
e* +ion — e +ion+~*
p+y—p+e+e
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Gamma-ray emission The gamma-ray sky
The main questions
Gamma-ray emission

A sketch of the nonthermal emission

Example
Looking through the Galaxy

Starlight towards a supernova remnant
Dust

Bremsstrahlung
Pion-decay
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Radio galaxies and blazars
Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

Unified model of active galactic nuclei

relativistic jet” :

"

accretion disk

dusty torus ‘

super—massive
black hole
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Radio galaxies and blazars
Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

Active galactic nuclei

@ active galactic nuclei (AGN)

e relativistic jets powered by accretion onto supermassive
black holes

e particle acceleration

e radio lobes push ambient plasma around

o AGN feedback heating: solution to cluster “cooling flow
problem” and mitigating massive galaxy formation

@ example: Cen A (3.7 Mpc)
“AGN under the microscope”

e GeV emission from giant radio
lobes (Fermi)

e TeV emission from
nucleus/inner jet (H.E.S.S.)
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@ current paradigm:

synchrotron self Compton
external Compton
proton-induced cascades
proton synchrotron

Proton-induced
cascade .
@ open questions:
ho @ energetics
4 nverse-Compton . .
. scattering @ mechanisms for jet
’ formation and collimation
@ plasma composition
(leptonic vs. hadronic,
1-zone vs. spine-layer)
@ acceleration mechanisms

@ TeV “flares” may sign instabilities in the accretion of matter onto <
the central supermassive black hole ><]Hns
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Radio galaxies and blazars
Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

Unified model of AGN: blazars

relativistic jet”

"

accretion disk

dusty torus ‘

super—massive
black hole
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Radio galaxies and blazars
Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

The blazar sequence

@ continuous sequence
from LBL—IBL-HBL

@ TeV blazars are dim
(very sub-Eddington)

@ TeV blazars have
rising spectra in the
Fermiband (M'r < 2)

Log L [erg s7!]

Log v [Hz]

Ghisellini (2011)
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Radio galaxies and blazars
Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

Blazar variability

@ complex multi-wavelength
behaviour challenges simple
models

opey

@ extreme variability, e.g., in
Mk 421:

reando

« Swift (XAT)
= RXTE (PCA)

Suzak
L RXTE (ASw) R 0% VERITAS Mrk 421 in 2010: Integral flux vs time E>300 GeV
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Radio galaxies and blazars
Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

Blazar variability: causality

= e — — — ———— g
w 4E PKS 2155-304 —
o asE H.E.S.S.: July, 28 2006 -
o = =
i 3;— 7;
; = —
§ 255 | —
o = A\ =
S 2 =
2 B \ E
I - = ‘# Crab nebula flux —
1= > 2 order of magnitude flare t!* =
E 2-3 minute variability timescale LT { E
05— A tud ) -
:‘ L | | ) ) ) ’ | ‘ : “ -quu-u..:

0 40 60 80 100 120

Time - MJD53944.0 [min]
variability timescale is Ao ~ 0.01RscC:
@ causality requires R < cAtyay — very small emission region

@ implies bulk motion w/ Lorentz factor v > 50 (Begeimann, Fabian, Rees 2008) xj
/ NHITS
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Radio galaxies and blazars
Galaxies and clusters
Fundamental physics

Extragalactic gamma-ray sources

Blazar variability: Quantum Gravity constraints

10°

i 200 - 800‘GeV ;QQ ‘ I L
“-:“: 2f ﬂ‘. ¥ vy “ Q.‘Q' i .
é .Q ‘Obo L
10°, ..'IP"'."‘". }
a2t i + +l l PKS 2155-304 ]
:: sk + + H.E.S.S.: July, 28 2006 |
*ﬂ% 7 b !, _
R > 800 GeV " é
o) 5 5 . Sepattie
t [min]

no observable time delay between low and high energy photons!

— constraints on energy-dependent violation of Lorentz invariance
(energy-dependent speed of light) as predicted in various models of xj
Quantum Gravity NHis
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Radio galaxies and blazars
Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

Observational gamma-ray cosmology

Annihilation and pair production

o TeV blazar
< —-IW/ W ==
W

extragalactic backgroud
light (infrared, eV)
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Radio galaxies and blazars
Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

Observational gamma-ray cosmology

Annihilation and pair production

Vs = \/2EEgpL(1 — cos ) > 2m,c?

e TeV blazar
<I e" W <_\/\/\/\ W >.<

extragalactic backgroud
light (infrared, eV)

Ayy ~ (35...700) Mpc for z=1...0
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Radio galaxies and blazars
Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

TeV photon absorption by pair production

top: intrinsic and observed SEDs of blazars at z = 1;
bottom: inferred I ¢ for the spectra in the top panel;

Fermi data on BL Lacs and non-BL Lacs (mostly FSRQs)
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Broderick, C.P.+ (in prep) 'X\juns
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Extragalactic gamma-ray sources

Radio galaxies and blazars

Galaxies and clusters

Fundamental physics

Extragalactic background light

Unique probe of the integrated star formation rate

vI,(A) (nW m™ sr™)
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Dwek & Krennrich (2012) , /XJHITS
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Radio galaxies and blazars
Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

The Fermi gamma-ray horizon

I B @ 150 significantly detected BL
Lac blazars above 3 GeV
] @ 003<z<16:
Lo ? 1 spectrum unabsorbed for
E <25 GeV
) ;\\'\\\ @ absorption feature moves to
.. lower E for higher source
oo ] redshifts (propagation
‘ ‘ distances) due to attenuation
T 1 of gamma rays by EBL
i \\3\ ! ] (optical/UV)
AN @ UV(> 5eV) EBL intensity:
I VS ass s 3(+£1)nWm2srTat z ~ 1
Energy |GeV| N
Ackermann+ (2012) /X\Juns
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Radio galaxies and blazars
Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

Starburst galaxies

VERITAS: M82

[Degrees ]

J

Both:

D ~3 Mpc %O

SFR = SFR in MW 1
(in @ compact region) O e Avcesion [Dogrees
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g
g

: NGC 253

NGC 253

00h48m 00h46m
Right Ascension
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Radio galaxies and blazar
Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

Cosmic rays and star formation

the picture: star formation — supernova remnants — proton
acceleration — pion decay induced by p-p interactions

@ dense material in starburst region

(n) ~ 250 cm~3

tpp ~ lesc

approaching the calorimetric limit
large NT bremsstrahlung and B:
efficient electron emission

@ FIR - radio correlation

e implies universal conversion:
SF — CR — synchrotron

@ now:
FIR — gamma-ray correlation

%
% NHITS
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Radio galaxies and blazars
Extragalactic gamma-ray sources Galaxies and clusters

Fundamental physics

FIR — gamma-ray correlation

Universal conversion: SF — CR — gamma rays

SFR (M_yr)
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Radio galaxies and blazars
Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

Galaxy clusters: pion decay

CR protons, accelerated in formation shocks, accumulate in clusters over Hubble time
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Radio galaxies and blazars
Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

Galaxy clusters: inverse Compton

Primary, shock-accelerated electrons
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Radio galaxies and blazars
Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

Galaxy clusters: total v-ray emission

Dominated by hadronically induced pion decay

Sea (E,> 100 GeV) [ ph cm?
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Radio galaxies and blazars
Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

Universal CR spectrum in clusters (pinzke & c.P. 2010)

10

=, Fermi: ap~2.5

0.1 HESS, MAGIC, VERITAS:

<f(p) p*>

0.01

0.001 . | . | . | . | . | . | .
10* 107 10° 10° 10 10° 10° 10"
p

normalized CR spectrum shows universal concave shape across clusters:
during the hierarchical assembly, every fluid element experienced on average .

the same history of shock strengths, responsible for shaping the CR spectrum,XJ

HITS
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Radio galaxies and blaza
Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

Constraining CR physics with v-ray observations

@ non-observations of v rays constrain CR-to-thermal pressure to
Pcr/Pin < 1.7% in Coma and Perseus

@ constrains maximum shock acceleration efficiency to < 50%

@ hydrostatic cluster masses not significantly biased by CRs: XJ
important for cluster cosmology! © s
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Radio galaxies and blazars
Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

Indirect DM searches: modeling

@ assume: supersymmetric particles are Majorana particles
— annihilate and produce gamma rays

= Lot o] it [ (58) g1

@ astrophysics: contains the uncertainty about the DM profile with
its central behavior and the substructure distribution

@ particle physics: assuming DM is supersymmetric, there is the
uncertainty about the cross section, neutralino mass, and decay
channels

o energy dependent effective area, detector
response, scanning strategy, . ..

NHITS
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Extragalactic gamma-ray sources G e
Fundamental physics

Indirect DM searches: sources

i Milky Way halo:
Galactic center: Very good statistics,
Good statistics, but but diffuse background

source confusion and
diffuse background

Galaxy clusters:
Low background, but low
statistics

Satellites:
Low background,
but low statistics

Extra galactic:
Very good statistics, but

astrophysics and galactic
diffuse foregrounds ><LITS

extragalactic gamm



Radio galaxies and blazars

Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

DM searches in clusters vs. dwarfs

Galaxy clusters: Dwarf galaxies:
Upper limits on DM annihilation rate; 95% C.L. Upper limits, 55 channel
' ! 0 = -
o1 | b
107 | wy—sbb e
1 A
K - g -
£ F
B 10 Saon
— - Combined —— AI367 —— S636 z .
102 [ E *
Fornax A1060  —— NGC4636
—— Coma — AWM7 NGC5813 107
107 - . o g o
10! 10° 10° WIMP mass [GeV]
m, [GeV]
Huang et al. 2011 (see also Ando & Nagai 2012) Ackermann et al. (Fermi-LAT) 2011

@ combined limits for dwarf galaxies ~ 20 times more constraining

@ high-resolution CDM simulations predict substructures that
boost the ~y-ray flux — clusters should outshine dwarfs by = 10 XJ
HITS

(e.g., Pinzke, C.P., Bergstrom 2011; Gao et al. 2011)
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Radio galaxies and blazars
Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

Enhancement from DM substructures

Springel et al., 2008 N . .
‘p‘”‘"‘gie‘ . -y Mresi Constant offset in the luminosity from

substructures between different mass

R e —10° L . ’
k: smooth halo 10 resolutions in the simulation (M,)-
N AN 10
%10‘ BN Norm oc Mo %-22°
3
P ] Extrapolate to the minimal mass of dark
3 matter halos (M;,) that can form.
I 1 The cold dark matter scenario suggests
5 102 = - 5
8 ] M ~ 10° M,.
§ bstruct 4 Hofmann, Schwarz and Stécker, 2008
§ 104 substructure E| Green, Hofmann and Schwarz, 2005
S E
sl b i L) Lo p(<r) oc (Mpgg / M, og)° 228
10—0.1 0 100 1000 sub( ) ( 200 res)
el - Luminosity boosted
by ~1000 in clusters

Pinzke et al. 2011, Gao et al 2011 ><J
HITS
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Radio galaxies and blazars
Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

Spatial DM distribution
2 T T 3 T T -
10 Cluster Einasto .- WO e — NAWpL .o
= Cluster NFW, B =1 . Gdaxy ~--- B P
10°E Cluster NFW, 3= 0.6 . i 102 — Dwarf 0 Lot ]
=== B, Cluster e R
B, Galaxy I - R -
10'L - - - By, Dwarf R oA 4= 10k R T ]

X) Tuew(< T200)
.

10° 7 E
— e — Z
VI®10? / \
T ’ ’
x ’ ’
107 g ]
l’ //
10° . .
0.01 0.10 1.00 0.01 0.10 1.00
/T X= 11y

Pinzke, C.P.,, Bergstréom 2011
@ form of smooth density profile only important for central region,
majority of smooth flux accumulates around r ~ rs/3

@ emission from substructures dominated by outer regions
— spatially extended

@ large boost in clusters (~ 1000); smaller boost in dwarf satellites<:—
(~ 20), much smaller if outskirts are tidally stripped XJHITS
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Radio galaxies and b

Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

DM searches in clusters vs. dwarfs

Clusters with substructures: Dwarf galaxies:
% U.L. on DM annihilation; effect of DM subhalos U .
10~ r r - pper limits, b channel
o | vt
10
0% |,

102

10%

(ov) [em® s71]

WIMP cross section [cm? /s]

107
Solid: with subs. (M, =107°M,) ]

10—27 —-aio
Dotted: w/o subs. 107 [—
102 ! L
1 2 \3 2 3
10 10 10 * WIMP masslfGeV] *
m,, [GeV]
Huang et al. 2011 (see also Ando & Nagai 2012) Ackermann et al. (Fermi-LAT) 2011

@ galaxy clusters ~ 10 times more constraining than dwarf
satellites when accounting for substructures!

/’><J HITS
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Radio galaxies and blazars
Extragalactic gamma-ray sources Galaxies and clusters
Fundamental physics

Conclusions on extragalactic v-ray astrophysics

@ the non-thermal universe revealed by high energy radiation
provides new probes of fundamental physics and cosmology

@ we are currently entering a fascinating era of multi-frequency
experiments: no shortage of data and puzzles — new ideas and
theories

@ mind the unseen (dark matter, galaxy clusters,...): what can it
teach us?

“In the fields of observation chance favors only the prepared mind!”
(Louis Pasteur)

\\/.><‘;JHITS

Christoph Pfrommer Introduction to extragalactic gamma-ray sources



Propagation of TeV photons
Plasma instabilities
The physics and cosmology of TeV blazars Cosmological consequences

The Hitchhiker’s Guide to ... Blazar Heating

@ High-energy Astrophysics

e TeV photon propagation
e plasma physics

@ Cosmological Consequences for

e intergalactic magnetic fields

e gamma-ray background

e thermal history of the Universe
e Lyman-« forest

e formation of dwarf galaxies

Collaboration members:
Broderick, Chang, Pfrommer, Puchwein, Springel ><J
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Propagation of TeV photons
Plasma instabilities
The physics and cosmology of TeV blazars Cosmological consequences

Annihilation and pair production

o TeV blazar
< = W W\ =

extragalactic backgroud
light (infrared, eV)

%J HITS
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Propagation of TeV photons
Plasma instabilities
The physics and cosmology of TeV blazars Cosmological consequences

Annihilation and pair production

Vs = \/2EEgpL(1 — cos0) > 2m,c?
o TeV blazar
< = W ‘\/W\ T——

extragalactic backgroud
light (infrared, eV)

Ay ~ (35...700) Mpc for z=1...0

.><‘/\J HITS
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Propagation of TeV photons
Plasma instabilities
The physics and cosmology of TeV blazars Cosmological consequences

Inverse Compton cascades

cosmic microwave
background, 1073 eV

TeV blazar

< Gov == ——
T

extragalactic backgroud
light (infrared, eV)

Aic ~ Ay,/1000 Ay ~ (35...700) Mpc for z=1...0

.><‘/\J HITS
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Propagation of TeV photons
Plasma instabilities
The physics and cosmology of TeV blazars Cosmological consequences

Inverse Compton cascades

cosmic microwave
background, 1073 eV

TeV blazar

< GeV & W N
?:«97 -
extragalactic backgroud
light (infrared, eV)

Aic ~ Ay,/1000 Ay ~ (35...700) Mpc for z=1...0

— each TeV point source should also be a GeV point source!

.><‘/\J HITS
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The physics and cosmology of TeV blazars

Propagation of TeV photons
Plasma instabilities

What about the cascade emission?

Cosmological consequences

Every TeV source should be associated with a 1-100 GeV gamma-ray

halo

10-11

10-12
expected cascade

emission

cm?s,

10-12

EF, [ere/

10-1t

10-2

1ES 0229+200

1ES 0347-121

1ES 1101-232

]“1 \

H J”

i~TeV detections

1 intrinsic spectra

108 10¢ 1010
E [eV]

1011 1012 1018

Neronov & Vovk (2010)
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Propagation of TeV photons
Plasma instabilities
The physics and cosmology of TeV blazars Cosmological consequences

What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray
halo — not seen!

10-11

1ES 0229+200 Pa—,

10-12
expected cascade

emission

i~TeV detections

Né = intrinsic spectra
$ ]
5 1012
0]
Fermi Lﬂ/
constraints 10

" l‘l\ l”’

108 10° 10w 1011 “Tow N
E [eV) X
Neronov & Vovk (2010) HITS
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Propagation of TeV photons
Plasma instabilities
The physics and cosmology of TeV blazars Cosmological consequences

Inverse Compton cascades

cosmic microwave
background, 1073 eV

TeV blazar

< Gov == ——
T

extragalactic backgroud
light (infrared, eV)

Aic ~ Ay,/1000 Ay ~ (35...700) Mpc for z=1...0
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0 extragalactic gamma-ray sources



Propagation of TeV photons
Plasma instabilities
The physics and cosmology of TeV blazars Cosmological consequences

Magnetic field deflection

- TeV blazar

‘\NV\>.<

=

extragalactic backgroud
light (infrared, eV)

\’.X:/\JHITS
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Propagation of TeV photons
Plasma instabilities
The physics and cosmology of TeV blazars Cosmological consequences

Magnetic field deflection

- TeV blazar

‘\NV\>.<

=

extragalactic backgroud
light (infrared, eV)

« GeV point source diluted — weak "pair halo"

« stronger B-field implies more deflection and dilution,
gamma-ray non-detection — B > 10~!¢ 4G - primordial fields?

%J HITS
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Propagation of TeV photons
Plasma instabilities
The physics and cosmology of TeV blazars Cosmological consequences

Magnetic field deflection

- TeV blazar
W T—e—_
W

extragalactic backgroud
light (infrared, eV)

« problem for unified AGN model: blazars and quasars apparently do
not share the same cosmological evolution (as otherwise, evolving
blazars would overproduce the gamma-ray background)!

%J HITS
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Propagation of TeV photons
Plasma instabilities
The physics and cosmology of TeV blazars Cosmological consequences

What else could happen?

o TeV blazar
< -\ W =

extragalactic backgroud
light (infrared, eV)

\’.X:/\JHITS
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Propagation of TeV photons
Plasma instabilities
The physics and cosmology of TeV blazars Cosmological consequences

Plasma beam instabilities

< = == =il ==
==

— pair plasma beam propagating
through the intergalactic medium




Propagation of TeV photons
Plasma instabilities
The physics and cosmology of TeV blazars Cosmological consequences

Interlude: plasma physics

How do et /e~ beams propagate through the intergalactic medium
(IGM)?

@ interpenetrating beams of charged particles are unstable to
plasma instabilities

@ consider the two-stream instability:

e, e = b e

et e p’ o
)

e, e b e
- )

A

HITS
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Propagation of TeV photons
Plasma instabilities
The physics and cosmology of TeV blazars Cosmological consequences

Two-stream instability: mechanism

consider wave-like perturbation in background plasma along the
beam direction (Langmuir wave):

@ initially homogeneous beam-e—:
attractive (repulsive) force by potential maxima (minima)

@ ¢ attain lowest velocity in potential minima — bunching up
@ e* attain lowest velocity in potential maxima — bunching up

D

e, e

0]

e e /"XJHITS
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Propagation of TeV photons
Plasma instabilities
The physics and cosmology of TeV blazars Cosmological consequences

Two-stream instability: mechanism

consider wave-like perturbation in background plasma along the
beam direction (Langmuir wave):

@ beam-et /e~ couple in phase with the background perturbation:
enhances background potential

@ stronger forces on beam-e* /e~ — positive feedback
@ exponential wave-growth — instability

D

e e” / ’X\JHITS
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Propagation of TeV photons
Plasma instabilities
The physics and cosmology of TeV blazars Cosmological consequences

Two-stream instability: momentum transfer

@ particles with v 2 Vphase:
pair momentum — plasma waves — growing modes: instability

@ particles with v < Vphase:
plasma wave momentum — pairs — Landau damping /><JH.TS
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Oblique instability

@ k oblique to vpeam: real word perturbations don’t choose “easy”
alignment = Y all orientations

@ oblique grows faster than two-stream: E-fields can easier deflect

ultra-relativistic particles than change their parallel velocities
(Nakar, Bret & Milosavljevic 2011)

wgy/c

wey/c

e BoaM flOV s——

Beam

><JHITS

Bret (2009), Bret+ (2010)
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Beam physics — growth rates

excluded for collective

plasma phenomena 4

104 1> 108 107
;\IIHHI‘ IHHII‘ IHHHI‘ \H\Hg
710 e
= E
b =
~ 107* A
& =
- i
o 10-3 E
o0 .
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S 10°F G 3
1075 k\\HHH‘ \I\HI\‘ \M‘H‘H\‘ L

102 10°' 1 10

E (TeV)

—
o

102
108
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108

10%

(od) yrSust Furoon

Broderick, Chang, C.P. (2012), also Schlickeiser+ (2012)

consider a light beam
penetrating into
relatively dense plasma

maximum growth rate

n
Fr~04~y beam wp
nGgm

oblique instability beats
inverse Compton
cooling by factor 10-100

assume that instability
grows at linear rate up
to saturation
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TeV emission from blazars — a new paradigm

N inv. Compton cascades — qgev
Yev+Yev — € +€ —
plasma instabilities — IGM heating

absence of ygev’s has significant implications for . ..
@ intergalactic magnetic field estimates

@ unified picture of TeV blazars and quasars:
explains Fermi’s v-ray background and blazar number counts

\’.X:/\JHITS
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TeV blazar luminosity density: today

@ collect luminosity of all 23
TeV blazars with good
spectral measurements
§~ @ account for the selection
B effects (sky coverage,
5 duty cycle, galactic
LR ) . occultation, TeV flux limit)
EER T . e TeV blazar luminosity
a4 ST ] density is a scaled
I e ] version (g ~ 0.2%) of
N S that of quasars!
38 40 42 44 46 48
log,4(L/erg st)
Broderick, Chang, C.P. (2012) JXJHlTs
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Unified TeV blazar-quasar model

42 — — — — —
. Quasars and TeV blazars are:
ol @ regulated by the same
= mechanism
g [
bl @ contemporaneous
o [ elements of a single AGN
N P . population: TeV-blazar
R T o activity does not lag
R P R N N quasar activity
aa b’ N T a
- I 1 — assume that they trace
a ‘ pree ‘ 1 each other for all redshifts!
3 38 40 42 44 46 48
logg(L/erg s7)
Broderick, Chang, C.P. (2012) JXJHWS
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How many TeV blazars are there?
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= |
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How many TeV blazars are there?

-7.0T T T T T
g 7k
=3 [
= i
= 8o
o [
v !
o L
= -8.5F
N i !
s i Fermi hard R
8 -9.0f gamma-ray blazar
i counts
-9.51L L L N L
0 1 2 3 4 5 6
z
Hopkins+ (2007) ——
JHITS
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How many TeV blazars are there?

-7.0 T T T T
Fermi extragalactic
gamma-ray background

Ty

4, 7.5
(=8
=
= -8.0r AN
s 3 E
b ool A\
= -85F A
N [ 1Y
2 i Fermi hard L
S -9.0}F gamma-ray blazar ‘i
counts
_9.5 A L 1 1 L
0 1 2 3 4 5 6
z

Hopkins+ (2007) N
N
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Redshift distribution of Fermi hard ~-ray blazars

4 I I

1LAC, Abdo et al. 2010
2LAC, Ackermann et al. 2011

b}

evolving hard gamma-ray blazars

~ /above the Fermi flux limit

X

dlog Ny/dz
0

T T T T ‘ T T T 9—*1—&-_[\ T
—~

o
©
o
—
—
o

:

Broderick, C.P.+ (in prep)

— evolving (increasing) blazar population consistent with ;
observed declining evolution (Fermi flux limit)! ,XJH,TS
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How many TeV blazars are there?

-7.0 T T T T
Fermi extragalactic
gamma-ray background
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Extragalactic gamma-ray background

@ intrinsic spectrum for a TeV blazar:

(&) + (&)

Ep = 1TeV is break energy, I', = 3 is high-energy spectral index,

I, related to ', which is drawn from observed distribution
@ extragalactic gamma-ray background (EGRB):

/\ F/ A

E’ = E(1 4+ Z’) is gamma-ray energy at emission,
Aq is physical quasar luminosity density,
ng ~ 0.2% is blazar fraction, 7 is optical depth ,XJHITS
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Extragalactic gamma-ray background

FE T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T TTTITH
L Dominated by Abdo et al. (2010) 4
/T\ soft sources Ackermann et al. (in prep.)
7 100 % =
B L %% unabsorbed ]
© [ ii . absorbed by ]
i "~ ~ _pair production " 1
n L ~o 4
> - N
5} N
2. 10-* = absorbed, after subtracting AN =
= F the resolved hard blazars, z < 0.3 \ B
o
~ [ k ]
> i R v
:? [ \N\\$ \
= F M \
ot \
1075 Il \HHH‘ Il \HHH‘ Il \HHH‘ Il \HHH‘ Il \HHH‘ Il \\HHH
10-2 10t 1 10 102 108 104

E (GeV) Broderick, C.P.+ (in prep.)

— evolving population of hard blazars provides excellent match - ;
to latest EGRB by Fermi for E > 3 GeV 7S
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Extragalactic gamma-ray background

FE T \\\HH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T TTTTTH
Dominated by g0 T ITT I o= |
o soft sources 5 80F 5/
| =
% 10-°
? 2
£ ]
g 3 L E
T 2 37
%) z i
=
)
Z 10 -
=) ]
AT 7 4
S e T ]
=z
< e
B peee
10*5 L \HHH‘ L \HHH‘ L \HHH‘ L \HHH‘ L \HHH‘ Lo
102 10—t 1 10 102 103 104

E (GeV) Broderick, C.P.+ (in prep.)

— the signal at 10 (100) GeV is dominated by redshifts z ~ 1 ;
(Z ~ 08) 7/ NHITS
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TeV emission from blazars — a new paradigm

N inv. Compton cascades — qgev
Yev+Yev — € +€ —
plasma instabilities — IGM heating

absence of ygev’s has significant implications for . ..
@ intergalactic magnetic field estimates
@ unified picture of TeV blazars and quasars:
explains Fermi’s v-ray background and blazar number counts
additional IGM heating has significant implications for ...
@ thermal history of the IGM: Lyman-« forest

@ late time structure formation: dwarf galaxies, galaxy clusters \,'XJH”S
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TeV blazars heat the intergalactic medium

temperature T [K]

7(2)

at mean density (A = 0) observed T[z(A)]
: ‘ ‘ — n(‘) blazarhpzlting ‘ ‘
T e BederetalSon

L no blazar heating
—— blazar heating

v
n

10° 1

bed
=
T

I5d
n
T

o

10% [

temperature 7'(A)/(10°K)

g
o
T

2
redshift z

3.0

2.6

24
redshift z

2.2

2.0

Puchwein, C.P.+ (2012)
@ every region in the universe is heated by at least one blazar

@ TeV blazars increase temperatures at mean density (A = 0)
by a factor 10 today
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Christoph Pfrommer

Introduction to extragalactic gamma-ray sources



Propagation of TeV photons
Plasma instabilities
The physics and cosmology of TeV blazars Cosmological consequences

Dwarf galaxy formation

@ thermal pressure opposes gravitational collapse on small scales
@ characteristic length/mass scale below which objects do not form

@ hotter intergalactic medium — higher thermal pressure
— higher Jeans mass:

1/2
3 3 3/2
MJ x ?52 x TIGM N MJ,bIazar ~ (Tblazar) Z 30
P / P MJ,photo 7-photo

— blazar heating increases M, by 30 over pure photoheating!

@ complications: non-linear collapse, delayed pressure response
in expanding universe

— expect slight reduction: M, piazar/ My photo = 10
C.P, Chang, Broderick (2012) X\J
g HITS
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Conclusions on blazar heating

Blazar heating: TeV photons are attenuated by EBL; their kinetic
energy — heating of the IGM; it is not cascaded to GeV energies

@ explains puzzles in gamma-ray astrophysics:

e lack of GeV bumps in blazar spectra without IGM B-fields
e unified TeV blazar-quasar model explains Fermi source
counts and extragalactic gamma-ray background

@ novel mechanism; dramatically alters thermal history of the IGM:

e uniform and z-dependent preheating
e quantitative self-consistent picture of high-z Lyman-« forest

@ significantly modifies late-time structure formation:

e suppresses late dwarf formation (in accordance with SFHs):
“missing satellites”, void phenomenon(?)

\’.X:/\JHITS
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Literature for the talk

@ Broderick, Chang, Pfrommer, The cosmological impact of luminous TeV blazars
I: implications of plasma instabilities for the intergalactic magnetic field and
extragalactic gamma-ray background, Apd, 752, 22, 2012.

@ Chang, Broderick, Pfrommer, The cosmological impact of luminous TeV blazars
1I: rewriting the thermal history of the intergalactic medium, Apd, 752, 23, 2012.

@ Pfrommer, Chang, Broderick, The cosmological impact of luminous TeV blazars
1ll: implications for galaxy clusters and the formation of dwarf galaxies, ApJ, 752,
24,2012.

@ Puchwein, Pfrommer, Springel, Broderick, Chang, The Lyman-« forest in a
blazar-heated Universe, MNRAS, 423, 149, 2012.
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Challenges to the Challenge

Challenge #1 (unknown unknowns): inhomogeneous universe

@ universe is inhomogeneous and hence density of electrons change as
function of position

@ could lead to loss of resonance over length scale < spatial growth
length scale (Miniati & Elyiv 2012)

@ growth length in oblique kinetic regime appears to be shorter than
gradient — no instability quenching!

Challenge #2 (known unknowns): non-linear saturation
@ we assume that the non-linear damping rate = linear growth rate
@ effect of wave-particle and wave-wave interactions need to be resolved

@ Miniati & Elyiv (2012) claim that the nonlinear Landau damping rate is
< linear growth rate, but need to scatter waves with Ak/k ~ 50

@ this is in conflict with the theory of induced scattering! (schiickeiser+ 2012) >\j
~ NHITS
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Implications for B-field measurements

Fraction of the pair energy lost to inverse-Compton on the CMB: fic = N'c/(T'ic + MNoblique)

EL; (erg s™!) at z=0.1
1041 1042 1043 1044 1045 1046

L

fIC( 1—e ™)

1072 =

108 | E
F z=0.1 E
I ]

10*4 lHlA 11 11““1 11 lllHA 11 lll“d 11 11““1 1 lHlM 1

10715 10714 10713 10712 10711 10710
EdN/dE (cm™2 s7!) <
\JHITS

Broderick, Chang, C.P. (2012)
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Conclusions on B-field constraints from blazar spectra

@ it is thought that TeV blazar spectra might constrain IGM B-fields

@ this assumes that cooling mechanism is IC off the CMB +
deflection from magnetic fields

@ beam instabilities may allow high-energy et /e~ pairs to self
scatter and/or lose energy

@ isotropizes the beam — no need for B-field

@ < 1-10% of beam energy to IC CMB photons

— TeV blazar spectra are not suitable to measure IGM B-fields
(if plasma instabilities saturate close to linear rate)!

HITS
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Simulations with blazar heating

Puchwein, C.P., Springel, Broderick, Chang (2012):
@ L = 15h~"Mpc boxes with 2 x 3843 particles
@ one reference run without blazar heating

@ three with blazar heating at different levels of efficiency
(address uncertainty)

@ used an up-to-date model of the UV background (raucher-Giguere+ 2009)

HITS
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The intergalactic medium
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Temperature-density relation

The physics and cosmology of TeV blazars

no blazar heating intermediate blazar heating

i}

log,o(T/K)

/s
3.5

. Viel et al. 2009, F=0.1-0.8 log o (Mpix /(™' M..)) h:t:- E

s Viel et al. 2009, F=0-0.9 56 78 910
3.0 1 1 I I I I | |
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3

Puchwein, C.P., Springel, Broderick, Chang (201 2)\ ><J
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The Lyman-« forest

Flux

\\/.><‘;JHITS
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The observed Lyman-« forest
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The simulated Ly-« forest
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Puchwein+ (2012) /’\JHITS
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Optical depths and temperatures
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no blazar heating o 10 blazar heating
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intermediate blazar heating
—-— strong blazar heating
©  Beckeretal. 2011
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Redshift evolutions of effective optical depth and IGM temperature
match data only with additional heating, e.g., provided by blazars! -« XJ
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Ly-a flux PDFs and power spectra

tuned UV background

tuned UV background
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Voigt profile decomposition
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0 500 1000 1500 2000 2500 3000
Y N TR T T T < LAY Y/ yaay T aB% 0

17\ O VAR

L L e

o
o

L L L | L L L L L
4870 4880 4890 4900 4910

@ decomposing Lyman-« forest into individual Voigt profiles

@ allows studying the thermal broadening of absorption lines
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Voigt profile decomposition — line width distribution
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Lyman-« forest in a blazar heated Universe

improvement in modelling the Lyman-« forest is a direct consequence
of the peculiar properties of blazar heating:

@ heating rate independent of IGM density — naturally produces
the inverted T—p relation that Lyman-« forest data demand

@ recent and continuous nature of the heating needed to match
the redshift evolutions of all Lyman-« forest statistics

@ magnitude of the heating rate required by Lyman-« forest data
~ the total energy output of TeV blazars (or equivalently ~ 0.2%
of that of quasars)

\\/.><‘;JHITS
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