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A theorist’s perspective of a galaxy cluster . . .

Galaxy clusters are dynamically evolving dark matter potential wells:

gas to the virial temperature
shock waves heat the infalling

Energy

Space

galaxy velocity dispersion

probes the DM potential
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. . . and how the observer’s Universe looks like

1E 0657-56 (“Bullet cluster”)
(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical:
NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing:
NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

Abell 3667
(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)
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Giant radio halo in the Coma cluster

thermal X-ray emission
(Snowden/MPE/ROSAT)

radio synchrotron emission
(Deiss/Effelsberg)
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The talk in a nutshell

Combining non-thermal observables (radio to γ-ray regime) with
cosmological simulations provides a novel tool in studying
fundamental high-energy/plasma astrophysics, cosmological
structure formation, and dark matter:

radio halos trace cosmic ray protons that are accelerated over
cosmic history while the magnetic fields are amplified by a
recent merger:
→ illuminating the process of structure formation
→ origin and evolution of cosmic magnetic fields, diffusive shock
acceleration, and turbulence

Gamma-ray observations might be the most sensitive probes of
the smallest cosmological structures:
→ if the dark matter interpretation of recent Fermi/Pamela/HESS
data is correct, then we live in a warm dark matter Universe
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Radiative cool core cluster simulation: gas density
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Mass weighted temperature
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Mach number distribution weighted by εdiss
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Radiative simulations – flowchart

CP, Enßlin, Springel (2008)
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Collisionless shocks at supernova remnants

Astrophysical collisionless shocks can:

accelerate particles (electrons and ions)

amplify magnetic fields (or generate them from scratch)

exchange energy between electrons and ions

SN 1006 X-rays (CXC/Hughes) G347.3 HESS TeV
(Aharonian et al. 2006)

Tycho X-rays (CXC)
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Diffusive shock acceleration – Fermi 1 mechanism (1)
conditions:

a collisionless shock wave

magnetic fields to confine energetic particles

plasma waves to scatter energetic particles→ particle diffusion

supra-thermal particles

mechanism:
supra-thermal particles diffuse upstream across shock wave

each shock crossing energizes particles through momentum transfer
from recoil-free scattering off macroscopic scattering agents

momentum increases exponentially with number of shock crossings

particle number decreases exponentially with number of crossings

→ power-law CR distribution
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Diffusive shock acceleration – Fermi 1 mechanism (2)

Spectral index depends on the Mach number of the shock,
M = υshock/cs:

log p

strong shock

10 GeV

weak shock

keV

log f
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Radiative simulations with cosmic ray (CR) physics

CP, Enßlin, Springel (2008)
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Radiative simulations with extended CR physics

CP, Enßlin, Springel (2008)
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Our philosophy and description

An accurate description of CRs should follow the evolution of
the spectral energy distribution of CRs as a function of time and
space, and keep track of their dynamical, non-linear coupling
with the hydrodynamics.

We seek a compromise between
capturing as many physical properties as possible
requiring as little computational resources as necessary

Assumptions:
protons dominate the CR population
a momentum power-law is a typical spectrum
CR energy & particle number conservation
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CR spectral description

p = Pp/mp c

Enßlin, CP, Springel, Jubelgas (2007)

f (p) = dN
dp dV = C p−αθ(p − q)

q(ρ) =
(

ρ
ρ0

) 1
3 q0

C(ρ) =
(

ρ
ρ0

)α+2
3 C0

nCR =

∫ ∞

0
dp f (p) = C q1−α

α−1

PCR =
mpc2

3
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dp f (p) β(p) p

=
C mpc2
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)
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Mach number distribution weighted by εdiss

1

10

-15 -10 -5 0 5 10 15-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15
x [ h-1 Mpc ]

-15

-10

-5

0

5

10

15

y 
[ h

-1
 M

pc
 ]

-15 -10 -5 0 5 10 15-15

-10

-5

0

5

10

15

〈M
ε̇

di
ss
/
〈ε̇

di
ss
〉

Christoph Pfrommer Dark Matter Searches in Galaxy Clusters



High-energy phenomena
Dark matter searches

Future perspectives

Introduction and motivation
Shocks and particle acceleration
Non-thermal emission from clusters

Mach number distribution weighted by εCR,inj

1

10

-15 -10 -5 0 5 10 15-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15
x [ h-1 Mpc ]

-15

-10

-5

0

5

10

15

y 
[ h

-1
 M

pc
 ]

-15 -10 -5 0 5 10 15-15

-10

-5

0

5

10

15

〈M
ε̇

C
R
,in

j〉
/
〈ε̇

C
R
,in

j〉

Christoph Pfrommer Dark Matter Searches in Galaxy Clusters



High-energy phenomena
Dark matter searches

Future perspectives

Introduction and motivation
Shocks and particle acceleration
Non-thermal emission from clusters

Mach number distribution weighted by εCR,inj(q > 30)
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CR pressure PCR
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Multi messenger approach for non-thermal processes
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Cosmic web: Mach number
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Radio gischt (relics): primary CRe (1.4 GHz)
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Radio gischt: primary CRe (150 MHz)

10-8

10-6

10-4

10-2

100

S ν
,p

ri
m

ar
y 

[ 
m

Jy
 a

rc
m

in
-2

 h
70

2  ]

-15 -10 -5 0 5 10 15-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15
x [ h-1 Mpc ]

-15

-10

-5

0

5

10

15

y 
[ 

h-1
 M

pc
 ]

-15 -10 -5 0 5 10 15-15

-10

-5

0

5

10

15

Christoph Pfrommer Dark Matter Searches in Galaxy Clusters



High-energy phenomena
Dark matter searches

Future perspectives

Introduction and motivation
Shocks and particle acceleration
Non-thermal emission from clusters

Radio gischt: primary CRe (15 MHz)
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Radio gischt: primary CRe (15 MHz), slower magnetic decline
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Hadronic cosmic ray proton interaction
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Hadronic cosmic ray proton interaction
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Cluster radio emission by hadronically produced CRe
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Thermal X-ray emission
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Radio gischt + central hadronic halo = giant radio halo
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Which one is the simulation/observation of A2256?

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
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Observation – simulation of A2256

Clarke & Enßlin (2006) CP, Battaglia, Pinzke (2008 in prep.)

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
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Unified model of radio halos and relics (CP, Enßlin, Springel 2008)

Cluster radio emission varies with dynamical stage of a cluster:

Cluster relaxes and develops cool core: radio mini-halo develops due to
hadronically produced CR electrons, magnetic fields are adiabatically
compressed (cooling gas triggers radio mode feedback of AGN that
outshines mini-halo→ selection effect).

Cluster experiences major merger: two leading shock waves are
produced that become stronger as they break at the shallow peripheral
cluster potential→ shock-acceleration of primary electrons and
development of radio relics.

Generation of morphologically complex network of virializing shock
waves. Lower sound speed in the cluster outskirts lead to strong shocks
→ irregular distribution of primary electrons, MHD turbulence amplifies
magnetic fields.

Giant radio halo develops due to (1) boost of the hadronically generated
radio emission in the center (2) irregular radio ‘gischt’ emission in the
cluster outskirts.
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Conclusions on non-thermal emission from clusters
Exploring the memory of structure formation

primary, shock-accelerated CR electrons resemble current
accretion and merging shock waves

CR protons/hadronically produced CR electrons trace the time
integrated non-equilibrium activities of clusters that is modulated
by the recent dynamical activities

How can we read out this information about non-thermal populations?
→ new era of multi-frequency experiments, e.g.:

GMRT, LOFAR, MWA, LWA, SKA: interferometric array of radio
telescopes at low frequencies (ν ' (15− 240) MHz)

Simbol-X/NuSTAR: future hard X-ray satellites (E ' (1−100) keV)

Fermi γ-ray space telescope (E ' (0.1− 300) GeV)

Imaging air Čerenkov telescopes (E ' (0.1− 100) TeV)
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GMRT, LOFAR, MWA, LWA, SKA: interferometric array of radio
telescopes at low frequencies (ν ' (15− 240) MHz)

Simbol-X/NuSTAR: future hard X-ray satellites (E ' (1−100) keV)

Fermi γ-ray space telescope (E ' (0.1− 300) GeV)

Imaging air Čerenkov telescopes (E ' (0.1− 100) TeV)
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The matter content of the Universe – 2009

WMAP Five-Year: Komatsu et al. (2009)
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The WIMP miracle

Fermi introduced a new mass scale
of mweak ∼ 100 GeV to describe the
beta decay: n → p e− ν̄

assuming a new (heavy) particle X ,
initially in thermal equilibrium, with a
relic density

ΩX ∼
1

mPlT0 〈συ〉
∼

m2
X

mPlT0 g4
X

mx ∼ mweak ∼ 100 GeV
gx ∼ gweak ∼ 0.6

}
ΩX ∼ 0.1

Remarkable coincidence: particle physics independently
predicts particles with the right density to be dark matter
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WIMP detection

Correct relic density → DM annihilation in the Early Universe
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Indirect detection of dark matter

νeν
_
µ

νe

e+

Springel et al. 2008
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Indirect detection of dark matter

νeν
_
µ

νe

e+

H.E.S.S.

neutralinos

νµ

_

Supersymmetric

PAMELA

Fermi

χ
µ−

µ+

e−χ

and cooling:
limiting horizon ~ 1 kpc

Diffusive transport
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PAMELA and HESS data on electrons and positrons
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PAMELA: (Adriani et al. 2009)

rising positron fraction with energy
→ e−/e+ pair acceleration source
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Broken power-law fit

HESS: (Aharonian et al. 2009)

break in the e−/e+ spectrum
→ maximum voltage of accelerator
or DM particle mass
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Combining recent electron and positron data
Fermi: excess number of leptons compared to background model (Abdo et al. 2009)

Bergström, Edsjö & Zaharijas 2009

MDM = 1.6 TeV, 100% μ+μ-, EF=1100
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Interpretations of recent electron and positron data

excess number of leptons compared
to background (Fermi/HESS)

break in the e−/e+ spectrum
indicates special energy scale
(HESS)

rising positron fraction with energy
(PAMELA)

Bergström, Edsjö & Zaharijas 2009

MDM = 1.6 TeV, 100% μ+μ-, EF=1100

Fermi
HESS (×0.85)
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Background (×0.85)
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1.) nearby pulsars:
energetics convincing but smoothness of Fermi data remains difficult
to model (Harding & Ramaty 1987, Aharonian et al 1995, Malyshev et al. 2009)

2.) DM annihilations:
excellent fit to data but enhancement of cross-section over standard
value and muon decay channel necessary (Bergström et al. 2009)

→ Sommerfeld enhancement: 〈συ〉 ∼ c/υ (Arkani-Hamed et al. 2009)
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The key questions

How can we test this scenario?
Which are the most promising objects to target?
What are the cosmological implications of such an effective
dark matter annihilation?

I will argue in favor of gamma-ray observations of galaxy
clusters being able to scrutinize the DM interpretation of
Fermi/HESS/PAMELA data and will end with a surprising
cosmological result.

Pinzke, CP, Bergström, Phys. Rev. Lett., subm.,
arXiv:0905.1948 [astro-ph]
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Indirect detection of DM through gamma-rays
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Indirect detection of DM through gamma-rays
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Indirect detection of DM through gamma-rays
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Gamma-ray spectrum from DM annihilations
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Galaxy clusters vs. dwarf galaxies

1 The DM annihilation flux of the smooth halo component scales
as F ∼

∫
dVρ2/D2 ∼ M/D2 assuming a universal density

scaling1: the smooth component of dwarfs and galaxy clusters
are equally bright!

2 Substructure in dark matter halos is less concentrated compared
to the smooth halo component (dynamical friction, tidal heating
and disruption): the DM luminosity is dominated by substructure
at the virial radius, IF present!
→ these regions are tidally stripped in dwarf galaxies
→ galaxy clusters are dynamically ‘young’ and their subhalo
population can boost the DM luminosity by up to 200
(Springel et al. 2008).

1A more refined argument that takes into account the different halo
formation epochs breaking scale invariance yields the same result.
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Hadronic cosmic ray proton interaction
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Hadronic γ-ray emission, Eγ > 100 GeV
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Universal CR spectrum in clusters

IACT:       ~ 2.2αp

pαFermi:       ~ 2.4
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2  >

Normalized CR spectrum shows universal concave shape→ governed
mainly by hierarchical structure formation and adiabatic CR transport
processes. (Pinzke & CP, in prep.)

→ very promising for disentangling the dark matter annihilation signal!
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Gamma-ray spectrum from DM vs. CR interactions
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Gamma-ray spectrum for various galaxy clusters
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DM gamma-rays: without substructure
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DM gamma-rays: with substructure
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DM gamma-rays: with substructure and Milky Way
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Probing small scales with gamma-rays
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Implications for cosmological structure formation
Probing the linear power spectrum on the smallest scales
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Conclusions on dark matter searches

Gamma-ray observations of galaxy clusters by Fermi will test the
DM interpretation of the Fermi/HESS/PAMELA data in the next
years.

If the DM interpretation is correct, then we either live in a warm
dark matter Universe or there is a new dynamical effect during
non-linear structure formation that wipes out the smallest
structures.

Gamma-ray observations might be the most sensitive probes of
the smallest cosmological structures.
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Future perspectives and directions

Cluster
Astrophysics

and
Cosmology

Clusters as
Laboratories
for Fundamental
Plasma Physics

Understanding
AGN Feedback

in Clusters

Tracing the Dyna-
mical Evolution
of Dark Energy

Understanding the
Nature of

Dark Matter
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Clusters as laboratories for plasma physics
Opening up the radio and γ-ray window for the “non-thermal Universe”

plasma processes (acceleration, turbulence, instabilities,
anisotropic transport)

cosmic rays (including ultra-high energy CRs)

magnetic fields – origin, growth

feedback processes (AGN, galaxies)

goal: connecting multi-frequency observables (LOFAR, MAGIC) to
high-resolution simulations → fundamental plasma astrophysics

large scales: cluster “cluster archeology”,
cosmological surveys (eROSITA, DES)
small scales: solving riddles (cold fonts,
bubble stability) → new effects (magnetic
draping)

Dursi & CP 2008
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Understanding AGN feedback in clusters
The intertwined lives of supermassive black holes and cluster cores

1 AGN accretion, jet launch, bubble
formation: magnetic fields, cosmic
rays, and turbulence play crucial role

2 heating mechanism: cavity heating
through releasing potential energy,
weak shocks, sound damping, . . .
(McNamara & Nulsen 2007)

3 cosmological impact: role in galaxy
and cluster evolution

Perseus cluster
(NASA/CXC/IoA/A.Fabian et al.)

→ understanding both the detailed plasma physics and the statistical
properties of the AGN feedback in the cosmological context
→ high-performance simulations of the involved physics and new
observational strategies will elucidate the properties of the interaction
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Understanding the nature of dark matter
Unveiling dark matter annihilation in the presence of astrophysical foregrounds

disentangling the γ-ray emission resulting from dark matter (DM)
annihilation from the cosmic ray induced signal

electrons/positrons from DM annihilations vs. CR interactions:
modified synchrotron emission and local particle spectra

self-consistent cosmic ray simulations (galaxy clusters, our Galaxy)
and modeling of spectral and spatial emission characteristics
necessary to discover the properties of dark matter
→ collaborative opportunities with J. Weller/S. Hofmann/A. Burkert

NASA/DOE/LAT: Fermi’s 1st light
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Modelling non-thermal processes in the ISM
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Jubelgas, Springel, Enßlin, CP (2008)

interesting astrophysics associated with dynamically modeling
non-thermal processes in the ISM
→ collaborative opportunities with A. Burkert/H. Lesch and timely
projects of γ-ray (MAGIC, Fermi) and radio emission (LOFAR)
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Tracing the dynamical evolution of dark energy
Joint analysis of simulated cluster surveys

accelerated expansion of the Universe
caused by either a cosmological fluid
(scalar field, vacuum energy) or by
modification of General Relativity for small
curvature

this causes modified evolution of the signal
from cosmological standard candles (SNe)
/ yard sticks (baryon acoustic oscillations)
or a different growth of structure (weak
lensing, cluster surveys) → complementary
probes of precision cosmology

(NASA/WMAP Science Team)

→ study of the influence of different physical processes on cluster
mock catalogues in the X-rays (eROSITA) and the Sunyaev-Zel’dovich
effect (Planck, SPT, ACT) → collaborative opportunities with J. Weller
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Conclusions

In contrast to the thermal plasma, the non-equilibrium distributions of
CRs preserve the information about their injection and transport
processes and provide thus a unique window of current and past
structure formation processes!

1 Cosmological hydrodynamical simulations are indispensable for
understanding non-thermal processes in galaxy clusters
→ illuminating the process of structure formation

2 Multi-messenger approach including radio synchrotron, hard
X-ray IC, and HE γ-ray emission:

fundamental plasma physics: diffusive shock acceleration,
large scale magnetic fields, and turbulence
nature of dark matter
gold sample of clusters for precision cosmology
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CR phase-space diagram: final distribution @ z = 0
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CR impact on SZ effect: Compton y parameter
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Compton y difference map: yCR − yth
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Radio gischt illuminates cosmic magnetic fields
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Structure formation shocks triggered
by a recent merger of a large galaxy
cluster (Battaglia, CP, et al. 2008).
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Diffuse cluster radio emission – an inverse problem
Exploring the magnetized cosmic web

Battaglia, CP, Sievers, Bond, Enßlin (2008):

By suitably combining the observables associated with diffuse
polarized radio emission at low frequencies (ν ∼ 150 MHz,
GMRT/LOFAR/MWA/LWA), we can probe

the strength and coherence scale of magnetic fields on scales of
galaxy clusters,

the process of diffusive shock acceleration of electrons,

the existence and properties of the WHIM,

the exploration of observables beyond the thermal cluster
emission which are sensitive to the dynamical state of the
cluster.
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Population of faint radio relics in merging clusters
Probing the large scale magnetic fields

Finding radio relics in 3D cluster simulations using a friends-of-friends finder
with an emission threshold→ relic luminosity function

10-3

10-2

10-1

1

101

S ν [
 m

Jy
 a

rc
m

in
-2

 ]

-2 -1 0 1 2-2

-1

0

1

2

-2 -1 0 1 2
x [ h-1 Mpc ]

-2

-1

0

1

2

y 
[ 

h-1
 M

pc
 ]

-2 -1 0 1 2-2

-1

0

1

2

radio map with GMRT emissivity threshold

10-3

10-2

10-1

1

101

S ν [
 m

Jy
 a

rc
m

in
-2

 ]

-2 -1 0 1 2-2

-1

0

1

2

-2 -1 0 1 2
x [ h-1 Mpc ]

-2

-1

0

1

2

y 
[ 

h-1
 M

pc
 ]

-2 -1 0 1 2-2

-1

0

1

2

“theoretical” threshold (towards SKA)

Christoph Pfrommer Dark Matter Searches in Galaxy Clusters



High-energy phenomena
Dark matter searches

Future perspectives

Overview
Defining the questions
Conclusions

Relic luminosity function – theory
Relic luminosity function is very sensitive to large scale behavior of the
magnetic field and dynamical state of cluster:
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Rotation measure (RM)
RM maps and power spectra have the potential to infer the magnetic
pressure support and discriminate the nature of MHD turbulence in clusters:
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Left: RM map of the largest relic, right: Magnetic and RM power spectrum comparing

Kolmogorow and Burgers turbulence models.
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Particle acceleration by turbulence or shocks?
Diffuse low-frequency radio emission in Abell 521 (Brunetti et al. 2008)

colors: thermal X-ray emission; contours: diffuse radio emission.

“radio relic” interpretations with aged population of shock-accelerated
electrons or shock-compressed radio ghosts (aged radio lobes),

“radio halo” interpretation with re-acceleration of relativistic electrons
through interactions with MHD turbulence.

→ synchrotron polarization is key to differentiate!
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