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Introduction Puzzles in galaxy formation
Galaxy formation paradigm

Cosmic ray feedback

Puzzles in galaxy formation
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Puzzles in galaxy formation
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Cosmic ray feedback

How are galactic winds driven?

@ thermal pressure provided by
supernovae or active galactic
nuclei?

by massive
stars and quasars?

@ pressure of cosmic rays (CRs)
that are accelerated at
supernova shocks?

super wind in M82

NASA/JPL-Caltech/STScl/CXC/UofA

a

AIP
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How are galactic winds driven?

@ thermal pressure provided by
supernovae or active galactic
nuclei?

by massive
stars and quasars?

@ pressure of cosmic rays (CRs)
that are accelerated at
supernova shocks?

super wind in M82 @ energy density of CRs,
NASA/JPL-Caltech/STScl/CXC/UofA magnetic fie|ds, and |SM
turbulence all similar —
= CR feedback important! E

AIP
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Galactic cosmic ray spectrum

0 _ @ spans more than 33 decades in
10° 2t R SPem flux and 12 decades in energy

: 89% « . . s
10? 10% ie (aphas) @ “knee” indicates characteristic
0% 1% mostly e (betas)

maximum energy of galactic
accelerators
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. Pty @ CRs beyond the “ankle” have
extra-galactic origin
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data compiled by Swordy —_—
AIP
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Galactic cosmic ray spectrum

Cosmic Ray
energy spectrum

10° | m2s!
10° 89% protons

10% “He (alphas)
0% 1% mostly e (betas)

F (m?srs Gev)'
=)
%

I m2yr!
y

| km?yr!

10 10’ 10 10 107 10" e
E (eV)
data compiled by Swordy

spans more than 33 decades in
flux and 12 decades in energy

“knee” indicates characteristic
maximum energy of galactic
accelerators

CRs beyond the “ankle” have
extra-galactic origin

energy density of cosmic rays is
dominated by GeV energies

= grey approach sufficient for
feedback studies (Girichidis+ 2024) F

AIP
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Review on cosmic ray feedback

Astron Astrophys Rev (2023)31:4
https://doi.org/10.1007/500159-023-00149-2

REVIEW ARTICLE
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Updates

Cosmic ray feedback in galaxies and galaxy clusters

A pedagogical introduction and a topical review of the acceleration,
transport, observables, and dynamical impact of cosmic rays

Mateusz Ruszkowski' - Christoph Pfrommer?
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Wave-particle interactions
Cosmic ray transport Plasma instabilities

Propagation modes

Cosmic ray transport: an extreme multi-scale problem

Milky Way-like galaxy: gyro-orbit of GeV CR:
1
Iy ~ 10% pc _ Pt 10 6pc~ Lt
gal Ter eB.a 107" pc ) AU
= need to develop a fluid theory for a collisionless,
non-Maxwellian component! _E
Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2019) TAIP

Christoph Pfrommer Cosmic ray feedback in galaxy formation



Wave-particle interactions
Cosmic ray transport Plasma instabilities
Propagation modes

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

=

AIP
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Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP
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Wave-particle interactions
Cosmic ray transport Plasma instabilities

Propagation modes

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ electric fields vanish in the Alfvén wave frame: V x E = —%%

=

AIP

Cosmic ray feedback in galaxy formation



Wave-particle interactions
Cosmic ray transport Plasma instabilities

Propagation modes

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ electric fields vanish in the Alfvén wave frame: V x E = —%%

@ work out Lorentz forces on CRs in wave frame: F. = q&CB

=

AIP
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Wave-particle interactions
Cosmic ray transport Plasma instabilities

Propagation modes

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ electric fields vanish in the Alfvén wave frame: V x E = —%%

@ work out Lorentz forces on CRs in wave frame: F. = q&CB

@ Lorentz force depends on relative phase of CR gyro orbit and wave: —=
@ sketch: decelerating Lorentz force along CR orbit — p; decreases E
@ phase shift by 180°: accelerating Lorentz force — p; increases AIP
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Wave-particle interactions
Cosmic ray transport Plasma instabilities

Propagation modes

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ only electric fields can provide work on charged particles and
change their energy

=

AIP
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Wave-particle interactions
Cosmic ray transport Plasma instabilities
Propagation modes

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP
@ only electric fields can provide work on charged particles and
change their energy

@ in Alfvén wave frame, where E = 0, CR energy is conserved:
p? = pﬁ + p? = const. so that decreasing py causes p_ to increase

a

AIP
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Wave-particle interactions
Cosmic ray transport Plasma instabilities
Propagation modes

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ only electric fields can provide work on charged particles and
change their energy

@ in Alfvén wave frame, where E = 0, CR energy is conserved:
p? = pﬁ + p? = const. so that decreasing py causes p_ to increase

BN
@ this increases the CR pitch angle cosine = cos6 = % . % E
AIP
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Wave-particle interactions
Cosmic ray transport Plasma instabilities

Propagation modes

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ CRs resonantly interact with Alfvén waves so that the wavelength
equals the gyro-radius:

=

AIP
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Wave-particle interactions
Cosmic ray transport Plasma instabilities

Propagation modes

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ CRs resonantly interact with Alfvén waves so that the wavelength
equals the gyro-radius:

pic
L, = Y e
I Iy qB
=N
@ gyro resonance: w—Kv =nQ= n% E

Doppler-shifted MHD frequency is a multiple n of the CR gyrofrequency ~ AIP

Christoph Pfrommer Cosmic ray feedback in galaxy formation



Wave-particle interactions
Cosmic ray transport Plasma instabilities

Propagation modes

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob & CP

@ CRs resonantly interact with Alfvén waves so that the wavelength
equals the gyro-radius:

pic
L, = Y e
I Iy qB
=N
@ gyro resonance: w—Kv =nQ= n% ﬁ

Doppler-shifted MHD frequency is a multiple n of the CR gyrofrequency ~ AIP
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Wave-particle interactions
Cosmic ray transport Plasma instabilities
Propagation modes

Cosmic ray streaming and diffusion

@ CR streaming instability:
Kulsrud & Pearce (1969), Shalaby+ (2021, 2023), Lemmerz+ (2025)

@ if vgr > vi, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

e scattering off of this wave field limits
the (GeV) CRs’ bulk speed ~ v,

e wave damping: transfer of CR energy
and momentum to the thermal gas

a

AIP
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Cosmic ray streaming and diffusion

@ CR streaming instability:
Kulsrud & Pearce (1969), Shalaby+ (2021, 2023), Lemmerz+ (2025)

@ if vgr > vi, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

e scattering off of this wave field limits
the (GeV) CRs’ bulk speed ~ v,

e wave damping: transfer of CR energy
and momentum to the thermal gas

— CRs exert pressure on thermal gas via scattering on Alfvén waves

a

AIP
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Wave-particle interactions
Cosmic ray transport Plasma instabilities
Propagation modes

Cosmic ray streaming and diffusion

@ CR streaming instability:
Kulsrud & Pearce (1969), Shalaby+ (2021, 2023), Lemmerz+ (2025)

@ if vgr > vi, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

e scattering off of this wave field limits
the (GeV) CRs’ bulk speed ~ v,

e wave damping: transfer of CR energy
and momentum to the thermal gas

— CRs exert pressure on thermal gas via scattering on Alfvén waves

weak wave damping: strong coupling — CR stream with waves E

strong wave damping: less waves to scatter — CR diffusion prevails
AIP
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Wave-particle interactions

Cosmic ray transport Plasma instabilities
Propagation modes

Modes of CR propagation

advection
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1.0
0.8
0.6
043

0.2

2fchaur

—_——— 0.0

Vad t
adav —=
Thomas, CP, EnBlin (2020) E

AIP

Christoph Pfrommer Cosmic ray feedback in galaxy formation



Wave-particle interactions

Cosmic ray transport Plasma instabilities
Propagation modes

Modes of CR propagation

advection diffusion
T
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Thomas, CP, EnBlin (2020) E
AIP
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Cosmic ray transport

Modes of CR propagation

Wave-particle interactions
Plasma instabilities
Propagation modes

advection diffusion streaming 0
g T - N .
0.8
0.6 2
0.4
s —— — — 0.0
Vadvl 2kt Vat

Christoph Pfrommer

Thomas, CP, EnBlin (2020)

Cosmic ray feedback in galaxy formation
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Multi-phase ISM
Cosmic ray driven winds
Cosmic rays in galaxy formation Mass and energy loading factors

Cosmic ray transport in galaxies

@ CR transport in galaxies
demands modeling
non-linear Landau damping
(in warm/hot phase) and
ion-neutral damping (in disk)

this requires resolving the
multi-phase structure of the
ISM

development of CRISP
framework (

Thomas+ 2025)

=
HST mock image of CRISPy Milky Way Thomas+ (in prep.) E

Christoph Pfrommer Cosmic ray feedback in galaxy formation



Multi-phase ISM
Cosmic ray driven winds
Cosmic rays in galaxy formation Mass and energy loading factors

Multi-phase ISM modeling
CRISP framework

Cosmic Rays and InterStellar Physics

A CR « 3(oJ: Feedback

~

Thomas, CP, Pakmor (2025)
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Multi-phase ISM
Cosmic ray driven winds

Cosmic rays in galaxy formation Mass and energy loading factors

Multi-phase ISM modeling

CRISP framework o) Feedback
Cosmic Rays and InterStellar Physics i, T (%
A o

Full H — H, — He chemistry

sets ionization degree

K Chemistry

First ionization stages of C — O — Si

low temperature cooling

Photoelectric heating by dust

Thomas, CP, Pakmor (2025)

Christoph Pfrommer Cosmic ray feedback in galaxy formation
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Multi-phase ISM modeling

CRISP framework A CR

Cosmic Rays and InterStellar Physics

Improved SNe treatment (manifestly isotropic)

and stellar winds

Feedback

~

FUV NUV OPT radiation fields (reverse ray tracing)

absorbed by dust — impacting A Chemistry

Metal enrichment

Thomas, CP, Pakmor (2025)

Christoph Pfrommer Cosmic ray feedback in galaxy formation
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Multi-phase ISM modeling

CRISP framework @ Feedback

Cosmic Rays and InterStellar Physics

g

- S

Novel CR hydrodynamics Follow Ecr

coarse graining plasma physics and Ucr

CR ionization Self-consistently
impacting £l Chemistry evolve Kcr

CR microphysics

Thomas, CP, Pakmor (2025)
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Cosmic ray transport Cosmic ray driven winds
Cosmic rays in galaxy formation Mass and energy loading factors

Multi-phase ISM modeling

| E— ]
0% 102 10%

i .“‘/';)" oy ,,‘):'.“ ) i ) N w".\',‘j/- 3,,4( A
Thomas, CP, Pakmor (2025) .~ = . " (. 7577 bk ‘
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Introduction Multi-phase ISM
Cosmic ray transport Cosmic ray driven winds
Cosmic rays in galaxy formation Mass and energy loading factors

Multi-phase ISM modeling

Cosmic rays barely affect the ISM because ion-neutral damping erases Alfvén waves
CRMHD - 5" J77 ooy ™% ] DR T al” S * 4 MHD
i P it . 10210 10% /

Y [Hem™?

Thomas, GP, Pakmor (2025) N a7 o
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Multi-phase ISM
Cosmic ray driven winds
Cosmic rays in galaxy formation Mass and energy loading factors

Simulated Milky Way: surface density

Cosmic rays drive galactic winds, ram pressure propells mainly galactic fountains

Ilem=2
10 10%° 10*' 10%

CRMHD MHD

Christoph Pfrommer Cosmic ray feedback in galaxy formation
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Introduction Multi-phase ISM
Cosmic ray transport Cosmic ray driven winds
Cosmic rays in galaxy formation Mass and energy loading factors

Simulated Milky Way: temperature

Galactic winds without cosmic rays are much hotter

" T [K]
CRMHD 10 10° 10 MHD

<
£ a
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Introduction Multi-phase ISM
Cosmic ray transport Cosmic ray driven winds
Cosmic rays in galaxy formation Mass and energy loading factors

Multi-phase ISM modeling

Cosmic rays make galactic winds much denser

CRMHD [— ] MHD
101 102 10*! 10%
3 [Hem™?)

5 kpe

Thomas, CP, Pakmor (2025)
Christoph Pfrommer Cosmic ray feedback in galaxy formation
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Cosmic ray driven wind: mechanism

CRMHD MHD
= Pram R < 5 kpe R < 5 kpe
galactic centre galactic centre
Tnag
10t 104
T
g
o
m
2103 103
e
2
g
5102 1 10?
10! 10t
-75 -5 =25 0 25 50 75 -75 -5 =25 0 25 50 75

Thomas, CP, Pakmor (2025)

@ CR pressure gradient dominates over thermal and ram pressure
gradient and drives outflow: F
AIP

|V Pe + VPp| > p|VO|

Christoph Pfrommer Cosmic ray feedback in galaxy formation
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Mass and energy loading factors

hY
= CRHD
==+ MHD

vl
N
)
7/

SFR Mg yr

0.0 0.2 0.4 0.6 0.8
time ¢ [Gyr]

Thomas, CP, Pakmor (2025) AIP
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Mass and energy loading factors

hY
= CRHD

$20%

0.0 0.2 0.4 0.6 0.8
time ¢ [Gyr]

Ly

SFR M

Thomas, CP, Pakmor (2025) AIP
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Vulti-phase ISM

Cosmic ray driven winds
Cosmic rays in galaxy formation Mass and energy loading factors

Mass and energy loading factors

= CRHD
==+ MHD

Ly

Py -
-
%
¥20%
0.0 0.2 0.4 0.6 0.8
time ¢ [Gyr]

SFR M

= outflow

inflow

0.0 0.2 0.4 0.6 0.8 1.0
time ¢ [Gyr]

Thomas, CP, Pakmor (2025) AIP
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Cosmic rays in galaxy formation Mass and energy loading factors

Mass and energy loading factors

hY

! = CRHD
L ’- ==+ MHD

.‘ e -
2 10° * 0'
o 1
& 20% ;

107! !

0.0 0.2 0.4 0.6 0.8 1.0

time ¢ [Gyr]

4X = outflow

inflow

0.0 0.2 0.4 0.6 0.8 1.0
time ¢ [Gyr]

Thomas, CP, Pakmor (2025) AIP
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Cosmic rays in galaxy formation

Mass and energy loading facto

Cosmic ray feedback in galaxy formati

hY
10! = CRHD thermal
T - — =+ MHD 10° —— kinetic
5 7N\ ’
5 ~a0 -
2 10 * 0'
& 20%
107!
0.0 0.2 0.4 0.6 0.8
time ¢ [Gyr]
£ 4 — outflow
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'l —4
\1 10
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 1.0
time ¢ [Gyr] time ¢ [Gyr]
Thomas, CP, Pakmor (2025) AIP




Cosmic rays in galaxy formation

Vulti-phase ISM
Cosmic ray driven winds
Mass and energy loading factors

Mass and energy loading factors

Ly

SFR M

= CRHD
MHD

$20%

10°

thermal
— 1\'i||1‘| i('

— CR

0.0 0.2 0.4 0.6 0.8
time ¢ [Gyr]
4X = outflow
inflow
\ N
\ £
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L
1/
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
time ¢ [Gyr] time ¢ [Gyr]
Thomas, CP, Pakmor (2025) AIP
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Vulti-phase ISM
Cosmic ray driven winds
Mass and energy loading factors

Mass and energy loading factors

Ly

SFR M

= CRHD
MHD

$20%
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Conclusions for cosmic ray physics in galaxies

CR hydrodynamics:

@ novel theory of CR transport mediated by Alfvén waves
developed and coupled to magneto-hydrodynamics

o emerges from CR-wave
interactions

a

AIP
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Conclusions for cosmic ray physics in galaxies

CR hydrodynamics:

@ novel theory of CR transport mediated by Alfvén waves
developed and coupled to magneto-hydrodynamics

o emerges from CR-wave
interactions

CR feedback in galaxy formation:

@ CR feedback barely impacts ISM or star formation because of
strong ion-neutral damping in disk, which weakens CR coupling

@ CR feedback drives powerful galactic winds

@ CR feedback increases mass and energy loading factors by 4 E

AIP
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Literature for the talk

CR hydrodynamics and CR transport:

@ Pfrommer, Pakmor, Schaal, Simpson, Springel, Simulating cosmic ray physics on
a moving mesh, 2017, MNRAS, 465, 4500.

@ Thomas & Pfrommer, Cosmic-ray hydrodynamics: Alfvén-wave regulated
transport of cosmic rays, 2019, MNRAS, 485, 2977.

@ Thomas, Pfrommer, Pakmor, A finite volume method for two-moment cosmic-ray
hydrodynamics on a moving mesh, 2021, MNRAS, 503, 2242.

@ Thomas, Pfrommer, EnB3lin, Probing Cosmic Ray Transport with Radio
Synchrotron Harps in the Galactic Center, 2020, ApJL, 890, L18.

CR feedback in galaxy formation:
@ Ruszkowski, Pfrommer, Cosmic ray feedback in galaxies and galaxy clusters,
2023, Astron Astrophys Rey, 31, 4.
@ Thomas, Pfrommer, Pakmor, Cosmic ray-driven galactic winds: transport modes
of cosmic rays and Alfvén-wave dark regions, 2023, MNRAS, 521, 3023.

@ Thomas, Pfrommer, Pakmor, Why are thermally- and cosmic ray-driven galactic F
winds fundamentally different? 2025, A&A, 698, A104.
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Additional slides
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Cosmological galaxy formation
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Cosmic rays in cosmological galaxy simulations

The galaxy formation model
primordial and metal line cooling
sub-resolution model for star formation (Springel+ 03)

mass and metal return from stars to ISM
cold dense gas stabilized by pressurized ISM

thermal and kinetic energy from supernovae modeled
by isotropic wind — launched outside of SF region

black hole seeding and accretion model (Springel+ 05)

thermal feedback from AGN in radio and quasar mode

uniform magnetic field of 10710 G seeded at z = 128

Simulation suite (Buck, CP+ 2020)
@ 2 galaxies, baryons with 5 x 104 Mg ~ 5 x 10°
resolution elements in halo, 2 x 10° star particles
@ 4 models with different CR physics for each galaxy:

no CRs

CR advection

+ CR anisotropic diffusion
+ CR Alfvén wave cooling

AIP

The Auriga Project Grand+ (2017

ristoph Pfromm Cosmic ray feedback in galaxy formatio
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Cosmic rays in cosmological galaxy simulations

Auriga MHD models: CR transport changes disk sizes

102

AUCRdiff

10t

/

Xer = Puf

K

o b} L
-100 -50 0 50 100-100 -50 O 50 100-100 -50 O 50 100 - E

ko] 2 fkpe 2 [kpe|
Buck, CP, Pakmor, Grand, Springel (2020) AIP
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Cosmic rays in galaxy formation

Cosmic rays in cosmological galaxy simulations

Auriga MHD models: CR transport modifies the circum-galactic medium

]
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M kpe 2]
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Buck, CP, Pakmor, Grand, Springel (2020)
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