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Cosmic rays in cluster simulations Physical processes
Gamma-ray emission
Radio halos and relics

Shocks in galaxy clusters
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\ : . Sy . LB
1E 0657-56 (“Bullet cluster”)
(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: (radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)

NASA/STScl; Magellan/U.Arizona/D.Clowe et al.; Lensing:
NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)
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Cosmic rays in cluster simulations Physical processes
Gamma-ray emission
Radio halos and relics

Radiative simulations — flowcha
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Cosmic rays in cluster simulations Physical processes
Gamma-ray e

Radio h

Radiative simulations with CR physics

Cluster observables: Physical processes in clusters:

Sunyaev-
eldovich effec

X-ray
emission

galaxy
spectra

loss processes
gain processes

observqbles
C.P, EnBlin, Springel (2008) populations o

Cosmic ray tr:



Cosmic rays in cluster simulations Physical processes
Ga

Gamm.
Radio d S

Radiative simulations with extended CR physics
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Cosmic rays in cluster simulations Physical processes
Gamma-ray emission
Radio halos and relics

Hadronic cosmic ray proton interaction
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Cosmic rays in cluster simulations Physical processes
Gamma-ray emission
Radio halos and relics

Hadronic cosmic ray proton interaction
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Cosmic rays in cluster simulations Physical processes
Gamma-ray emission
Radio halos and relics

Universal CR spectrum in clusters (Pinzke & CP 2010)
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Normalized CR spectrum shows universal concave shape — governed by
hierarchical structure formation and the implied distribution of Mach numbers~._;
that a fluid element had to pass through in cosmic history. HITS
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Cosmic rays in cluster simulations Physical processes

Gamma-ray emission
Radio halos and relics

CR proton and ~-ray spectrum (Pinzke & CP 2010)
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Cosmic rays in cluster simulations Physical processes
Gamma-ray emission
Radio halos and relics

Hadronic v-ray emission, E, > 100 GeV
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Cosmic rays in cluster simulations Physical processes
Gamma-ray emission
Radio halos and relics

Inverse Compton emission, Eic > 100 GeV
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Cosmic rays in cluster simulations Physical processes
Gamma-ray emission
Radio halos and relics

Total y-ray emission, E, > 100 GeV
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Cosmic rays in cluster simulations Physical processes
Gamma-ray emission
Radio halos and relics

Gamma-ray scaling relations
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(HIFLUGCS) — predictions for Fermi and IACT's
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Cosmic rays in cluster simulations Physical processes
Gamma-ray emission
Radio halos and relics

~-ray limits and hadronic predictions (Ackermann et al. 2010)

F> 0.1 GeV ( ph cm2s~) F> 0.1 GeV ( ph emr?s-)

F> 0.1 GeV ( phenr2st)
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Cosmic rays in cluster simulations Physical processes
Gamma-ray emission
Radio halos and relics

Which one is the simulation/observation of A22567?

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
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Cosmic rays in cluster simulations Physical processes
Gamma-ray emission
Radio halos and relics

Observation — simulation of A2256

Clarke & EnBlin (2006) CP & Battaglia (in prep.)

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Radio halo theory — (i) hadronic model

pcr +p — 1t — e+
strength:

@ all required ingredients available:
shocks to inject CRp, gas protons as targets, magnetic fields

@ predicted luminosities and morphologies as observed without
tuning

@ power-law spectra as observed

weakness:
@ all clusters should have radio halos

@ does not explain all reported spectral features

° ... b4
HITS
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Radio halo theory — (i) hadronic model

pcr +p — 1t — e+
strength:

@ all required ingredients available:
shocks to inject CRp, gas protons as targets, magnetic fields

@ predicted luminosities and morphologies as observed without
tuning

@ power-law spectra as observed

weakness:
Q allclusters should have radio halos

@ does not explain all reported spectral features

° ... b4
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Observations and models
Cosmic ray transport CR
Rad /

Radio halo and spectrum in the Bullet cluster
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Radio luminosity - X-ray luminosity
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Radio luminosity - X-ray luminosity
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Radio luminosity - X-ray luminosity
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Radio luminosity - central entropy
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Radio luminosity - central entropy
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Radio luminosity - central entropy
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Radio luminosity - central entropy
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Proton cooling times
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Proton cooling times
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Radio halo theory — (ii) re-acceleration model

strength:

@ all required ingredients available:
radio galaxies & relics to inject CRe, plasma waves to re-accelerate, ...

@ reported complex radio spectra emerge naturally

@ clusters without halos « less turbulent

weakness:
@ Fermi Il acceleration is inefficient — CRe cool rapidly
@ observed power-law spectra require fine tuning
o ...
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Radio halo theory — (ii) re-acceleration model

strength:

@ all required ingredients available:
radio galaxies & relics to inject CRe, plasma waves to re-accelerate, ...

@ reported complex radio spectra emerge naturally

@ clusters without halos « less turbulent

weakness:
@ Fermi Il acceleration is inefficient — GRe-ceetrapidly
@ observed power-law spectra require fine tuning
o ...
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Observations and models
CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Electron cooling times
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Electron cooling times
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Fermi Il acceleration is inefficient

@ diffusion equation for wave energy Wy (Brunetti & Lazarian 2007)
OWy 9 [, 0
T = 3% [kak < ﬂ Zr YW + I(k)

@ stationary turbulent spectrum (inertial range: I'; ~ 0):

Wk| x k—3/2 — re-acceleration of CRs — radio halo

closed box

HITS
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Fermi Il acceleration is inefficient

@ diffusion equation for wave energy Wy (Brunetti & Lazarian 2007)

oW 0 0
8tk <Uph>kwk—ak [kszk < ﬂ Zr Wi + I(k)

@ stationary turbulent spectrum (inertial range: I'; ~ 0):

) o =3/2 el - o
Wk\closed box O K > re-acceleration of CRs — radio halo

@ radio luminosity dominated by core & cores are leaky boxes:

— sound waves carry energy to cluster periphery, steepen to
shocks and dissipate

— much less energy available for re-acceleration! .
/<IH|TS
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Cosmic ray transport — magnetic flux tube with CRs
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Cosmic ray advection

/4 HITS
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Cosmic rays in cluster simulations Observations and models
CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Adiabatic expansion and compressmn

NHirs

Christoph Pfrommer Cosmic ray transport




Cosmic rays in cluster simulations Observations and models
Cosmic ray transpor: CR pumping, streaming, and diffusion

C s Radio and gamma-ray bimodality

Cosmic ray streaming
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Cosmic rays in cluster simulations Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
C 5 Radio and gamma-ray bimodality

Expanded CRs
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Cosmic rays in cluster simulations Observations and models
Cosmic ray transpor: CR pumping, streaming, and diffusion
s Radio and gamma-ray bimodality
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Cosmic rays in cluster simulations Observations and models
Cosmic ray transpor: CR pumping, streaming, and diffusion

s Radio and gamma-ray bimodality

Turbulent pumping
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Turbulent-to-streaming ratio
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Cosmic rays in cluster simulations Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Conclusions Radio and gamma-ray bimodality

Are CRs confined to magnetic flux tubes?

NHirs
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Cosmic rays in cluster simulations Observations and models
Cosmic ray tral port CR pumping, streaming, and diffusion
Co Radio and gamma-ray bimodality

Escape via diffusion: energy dependence

NHirs
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

CR transport theory

CR continuity equation in the absence of sources and sinks:

gihrﬁ.(vg):o U = Vad + Udi + Ust
Vo
Vst = —VUst = —
V o
15
Vi = —Kdi — Vo0
0
. =YY Ly v
Vad — —Kuw E v% Kty = tus u
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Cosmic 1 cluster simulations Observations and models
ay transport CR pumping, streaming, and diffusion
s Radio and gamma-ray bimodality

Co ns

CR profile due to advection

X
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

CR density profile

CR density profile
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

CR density at fixed particle energy

CR normalisation profile

C(r)

T = g
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Observations and models
Cosmic ray transport

CR pumping, streaming, and diffusion

Radio and gamma-ray bimodality
Gamma-ray emission profile

pcr+p — 70 — 21

!
gamma ray emissivity
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Gamma-ray luminosity PR + p — 10 — 24
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Cosmic ray transport

Observations and models
CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

~-ray limits and hadronic predictions (Ackermann et al. 2010)

F> 0.1 GeV ( ph cm2s~) F> 0.1 GeV ( ph emr?s-)

F> 0.1 GeV ( phenr2st)
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Observations and models
Cosmic ray transport CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality

Radio emission profile Por +p — 7+ — e* — radio

radio emissivity

10¢ 5 - 1 /‘<I
Vi 10 10 10 .

T = Ty r/r,

Cosmic ray tr



Cosmic ray transport

Radio luminosity

Yu =

tu
Ust

L,(7.)/L,(10)

Observations and models
CR pumping, streaming, and diffusion
Radio and gamma-ray bimodality
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Conclusions

Conclusions

@ cosmological simulations predict universal CR spectrum and
distribution (ignoring active CR transport)
— Fermi limits consistent with simulations that use most
optimistic assumptions of CR acceleration and transport
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Conclusions

Conclusions

@ cosmological simulations predict universal CR spectrum and
distribution (ignoring active CR transport)
— Fermi limits consistent with simulations that use most
optimistic assumptions of CR acceleration and transport

@ streaming & diffusion produce spatially flat CR profiles
advection produces centrally enhanced CR profiles
— profile depends on advection-to-streaming-velocity ratio
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Conclusions

Conclusions

@ cosmological simulations predict universal CR spectrum and
distribution (ignoring active CR transport)
— Fermi limits consistent with simulations that use most
optimistic assumptions of CR acceleration and transport

@ streaming & diffusion produce spatially flat CR profiles
advection produces centrally enhanced CR profiles
— profile depends on advection-to-streaming-velocity ratio

@ turbulent velocity ~ sound speed — cluster merger
CR streaming velocity ~ sound speed < plasma physics
— peaked/flat CR profiles in merging/relaxed clusters
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Conclusions

Conclusions

@ cosmological simulations predict universal CR spectrum and
distribution (ignoring active CR transport)
— Fermi limits consistent with simulations that use most
optimistic assumptions of CR acceleration and transport

@ streaming & diffusion produce spatially flat CR profiles
advection produces centrally enhanced CR profiles
— profile depends on advection-to-streaming-velocity ratio

@ turbulent velocity ~ sound speed — cluster merger
CR streaming velocity ~ sound speed « plasma physics
— peaked/flat CR profiles in merging/relaxed clusters

@ energy dependence of v — CR & radio spectral variations
— outstreaming CR: dying halo « decaying turbulence

— bimodality of cluster radio halos & gamma-ray emission! MH.TS
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Conclusions
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