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Cosmological structure formation

ESA/Planck Collaboration (2013)

dropping pebbles into the pond generates
expanding waves that interfere with each other

small fluctuations in cosmic
microwave background are initial
conditions for structure formation

galaxies and clusters form at sites
of constructive interference of
those primordial waves

cosmic matter assembles in the
“cosmic web” through gravitational
instability

galaxies form as “beats on a
string” along the cosmic filaments

galaxy clusters form at the knots
of the cosmic web by mergers of
galaxies and galaxy groups
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Galaxy formation in dark matter halos

x 30

the number of galaxies in
dark matter (DM) halos of
mass ≳ 1012 M⊙ is
exponentially suppressed
→ some non-gravitational
process introduces a new
scale of galaxy formation

discrepancy of the power-law
slopes at the faint end
→ some process lowers the
star conversion rate in
smaller halos
or the DM halo mass function
is wrong (warm DM?)
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Feedback by galactic winds

supernova Cassiopeia A
X-ray: NASA/CXC/SAO; Optical: NASA/STScI;
Infrared: NASA/JPL-Caltech/Steward/O.Krause et al.

galactic supernova remnants
drive shock waves, turbulence,
accelerate electrons + protons,
amplify magnetic fields

star formation and supernovae
drive gas out of galaxies by
galactic super winds

critical for understanding the
physics of galaxy formation
→ may explain puzzle of low
star conversion efficiency in
dwarf galaxies
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How are galactic winds driven?

NASA/JPL-Caltech/STScI/CXC/UofA

super wind in M82

thermal pressure provided by
supernovae or AGNs?

radiation pressure and
photoionization by massive
stars and QSOs?

pressure of cosmic rays (CRs)
that are accelerated at
supernova shocks?

observed energy equipartition between cosmic rays, thermal gas and
magnetic fields
→ may suggest self-regulated feedback loop with CR driven winds
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Galactic cosmic ray spectrum

data compiled by Swordy

spans more than 33 decades in
flux and 12 decades in energy

“knee” indicates characteristic
maximum energy of galactic
accelerators

CRs beyond the “ankle” have
extra-galactic origin

energy density of cosmic rays,
magnetic fields, and turbulence
in the interstellar gas all similar
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Review on cosmic ray feedback
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Cosmic ray transport: an extreme multi-scale problem

Milky Way-like galaxy:

rgal ∼ 104 pc

gyro-orbit of GeV CR:

rcr =
p⊥c

e BµG
∼ 10−6 pc ∼ 1

4
AU

⇒ need to develop a fluid theory for a collisionless,
non-Maxwellian component!
Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2019)
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sketch: Jacob & CP

electric fields vanish in the Alfvén wave frame: ∇× E = − 1
c

∂B
∂t

work out Lorentz forces on CRs in wave frame: FL = Ze v × B
c

Lorentz force depends on relative phase of CR gyro orbit and wave:

sketch: decelerating Lorentz force along CR orbit → p∥ decreases
phase shift by 180◦: accelerating Lorentz force → p∥ increases
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only electric fields can provide work on charged particles and
change their energy

in Alfvén wave frame, CR energy is conserved:
p2 = p2

∥ + p2
⊥ = const. so that decreasing p∥ causes p⊥ to increase

this increases the CR pitch angle cosine µ = cos θ = B
|B| · p

|p|
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CRs resonantly interact with Alfvén waves so that the wavelength
equals the gyro-radius:

L∥ = rg =
p⊥c
ZeB

gyro resonance: ω − k∥v∥ = nΩ = n ZeB
γmic

Doppler-shifted MHD frequency is a multiple n of the CR gyrofrequency
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an anisotropic CR distribution moving rightwards (red) or leftwards
(blue) has initially values of the pitch angle cosine |µ| = |v∥/v | ≲ 1

CR scattering at Alfvén waves can be described as a random walk in µ,
which conserves the particle energy in the Alfvén wave rest frame

diffusion process in µ along the equal-energy circle in velocity
space with scattering frequency ν(p, µ) ⇒ homogeneous µ distribution:

∂f
∂t

∣∣∣∣
scatt

=
∂

∂µ

[
1 − µ2

2
ν(p, µ)

∂

∂µ
f
]
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CR streaming and diffusion

CR streaming instability: Kulsrud & Pearce 1969

if vcr > va, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

scattering off of this wave field limits
the (GeV) CRs’ bulk speed ∼ va

wave damping: transfer of CR energy
and momentum to the thermal gas

→ CRs exert pressure on thermal gas via scattering on Alfvén waves

weak wave damping: strong coupling → CR stream with waves
strong wave damping: less waves to scatter → CR diffusion prevails
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Analogies of CR and radiation hydrodynamics
CRs and radiation are relativistic fluids

regime CR transport radiation HD analogy
• tangled B, CR diffusion diffusive transport

strong scattering in clumpy medium

• resolved B, CR streaming Thomson scattering (τ ≫ 1)
strong scattering with va → advection with v

• weak scattering CR streaming flux-limited diffusion
and diffusion with τ ∼ 1

• no scattering CR propagation vacuum propagation
with c

Jiang & Oh (2018), Thomas & CP (2019)

but: CR hydrodynamics is charged RHD
→ account for Lorentz force and anisotropic transport along B
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CR vs. radiation hydrodynamics
capitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018)

derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)

lab-frame equ’s for CR energy and momentum density, εcr and fcr/c2

∂εcr

∂t
+∇ · fcr = −w± · bb

3κ±
· [fcr − w±(εcr + Pcr)]− v ·gLorentz+Sε

1
c2

∂fcr

∂t
+∇ · Pcr = − bb

3κ±
· [fcr − w±(εcr + Pcr)]− gLorentz +Sf

Alfvén wave velocity in lab frame: w± = v ± va, CR pressure tensor
Pcr = Pcr1, CR scattering frequency ν̄± = c2/(3κ±)

lab-frame equ’s for radiation energy and momentum density, ε and f/c2

(Mihalas & Mihalas 1984, Lowrie+ 1999):

∂ε

∂t
+∇ · f = −σsv · [f − v · (ε1 + P)] + Sa

1
c2

∂f
∂t

+∇ · P = −σs [f − v · (ε1 + P)] + Sav

problem: CR lab-frame equation requires resolving rapid gyrokinetics!
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CR vs. radiation hydrodynamics
capitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018)

derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)

lab-frame equ’s for CR energy and momentum density, εcr and fcr/c2

∂εcr
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lab-frame equ’s for radiation energy and momentum density, ε and f/c2

(Mihalas & Mihalas 1984, Lowrie+ 1999):
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∂t
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1
c2
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solution: transform in comoving frame and project out gyrokinetics!
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Alfvén-wave regulated CR transport

comoving equ’s for CR energy and momentum density (along B), εcr

and fcr/c2, and Alfvén-wave energy densities εa,± (Thomas & CP 2019)

∂εcr

∂t
+∇ · [v(εcr + Pcr) + bfcr] = v · ∇Pcr

− va

3κ+
[fcr − va(εcr + Pcr)] +

va

3κ−
[fcr + va(εcr + Pcr)] ,

∂fcr/c2

∂t
+∇ ·

(
v fcr/c2

)
+ b · ∇Pcr = −(b · ∇v) · (bfcr/c2)

− 1
3κ+

[fcr − va(εcr + Pcr)]− 1
3κ−

[fcr + va(εcr + Pcr)] ,

∂εa,±
∂t

+∇ · [v(εa,± + Pa,±)± vabεa,±] = v · ∇Pa,±

± va

3κ±
[fcr ∓ va(εcr + Pcr)]− Sa,±.
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acceleration
+ energy transfer
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are  … fast
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Wave-particle interactions
CR hydrodynamics
Radio harps

Non-equilibrium CR streaming and diffusion
Coupling the evolution of CR and Alfvén wave energy densities

Thomas & CP (2019)

Christoph Pfrommer Cosmic rays in galaxy formation


tp_2018_fig_2.mov
Media File (video/quicktime)



Introduction
Cosmic ray transport

Cosmic rays in galaxy formation

Wave-particle interactions
CR hydrodynamics
Radio harps

Non-equilibrium CR streaming and diffusion
Varying damping rate of Alfvén waves modulates the diffusivity of solution
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Wave-particle interactions
CR hydrodynamics
Radio harps

Anisotropic CR streaming and diffusion – AREPO
CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics

CR streaming and diffusion
along magnetic field lines in
the self-confinement picture

moment expansion similar to
radiation hydrodynamics

accounts for kinetic physics:
non-linear Landau damping,
gyro-resonant instability, . . .

Galilean invariant and causal
transport

energy and momentum
conserving Thomas, CP, Pakmor (2021), Thomas & CP (2022)
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Radio synchrotron harps: the model

shock acceleration scenario

B

ISM

CRs

CRs

bow shock

contact layer

termination shock

Thomas, CP, Enßlin (2020)

CR diffusion vs. streaming + diffusion

x [pc]

2

4

6

8

C
R

en
er

gy
d

en
si

ty
[e

rg
cm
−

3
]

×10−12

diffusion

−4 −2 0 2 4

x [pc]

2

4

6

8 streaming +
diffusion

10

20

30

40

50

60

ti
m

e
[k

y
r]

Christoph Pfrommer Cosmic rays in galaxy formation



Introduction
Cosmic ray transport

Cosmic rays in galaxy formation

Wave-particle interactions
CR hydrodynamics
Radio harps

Radio synchrotron harps: the model

shock acceleration scenario

B

ISM

CRs

CRs

bow shock

contact layer

termination shock

Thomas, CP, Enßlin (2020)

CR diffusion vs. streaming + diffusion

x [pc]

2

4

6

8

C
R

en
er

gy
d

en
si

ty
[e

rg
cm
−

3
]

×10−12

diffusion

−4 −2 0 2 4

x [pc]

2

4

6

8 streaming +
diffusion

10

20

30

40

50

60

ti
m

e
[k

y
r]

Christoph Pfrommer Cosmic rays in galaxy formation



Introduction
Cosmic ray transport

Cosmic rays in galaxy formation

Wave-particle interactions
CR hydrodynamics
Radio harps

Radio synchrotron harps: testing CR propagation

Haywood+ (Nature, 2019)
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Haywood+ (Nature, 2019)

CR streaming and diffusion

−0.045 −0.030 −0.015 0.000 0.015 0.030

arc length [◦]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ra
d

io
b

ri
gh

tn
es

s

1 pc
background

simulation

signal

Thomas, CP, Enßlin (2020)

Christoph Pfrommer Cosmic rays in galaxy formation



Introduction
Cosmic ray transport

Cosmic rays in galaxy formation

Cosmic ray driven winds
Galactic magnetic dynamo
Cosmic rays and non-thermal emission

Outline

1 Introduction
Puzzles in galaxy formation
Galaxy formation paradigm
Cosmic ray population

2 Cosmic ray transport
Wave-particle interactions
CR hydrodynamics
Radio harps

3 Cosmic rays in galaxy formation
Cosmic ray driven winds
Galactic magnetic dynamo
Cosmic rays and non-thermal emission
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Cosmic ray driven winds
Galactic magnetic dynamo
Cosmic rays and non-thermal emission

1. Galaxy simulations with cosmic ray feedback

Thomas, CP, Pakmor (2023)
Cosmic ray-driven galactic winds: transport modes of cosmic rays
and Alfvén-wave dark regions

MHD + Alfvén wave regulated CR hydrodynamics: 1011 M⊙ halo
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Wind launching

Thomas, CP, Pakmor (2023)
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Wind launching
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Magnetic field topology

Thomas, CP, Pakmor (2023)
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ρamag,pressure = −∇B2/2

ρamag,tension = +(B ·∇)B

ignoring toroidal field
components:

ρamag,pressure,z = −(∂zBz)Bz

ρamag,tension,z = +Bz(∂zBz)
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Wind properties

Thomas, CP, Pakmor (2023)
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What is the origin of the Alfvén wave dark regions?

Thomas, CP, Pakmor (2023)

CRs faster than AWs
AWs gain energy

CRs slower than AWs
AWs lose energy
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Parallel CR diffusion coefficient
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The CR diffusion coefficient is not constant but strongly depends on environment!
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Origin and growth of magnetic fields

The general picture:
Origin. Magnetic fields are generated by
1. electric currents sourced by a phase
transition in the early universe or 2. by
the Biermann battery

Growth. A small-scale (fluctuating)
dynamo is an MHD process, in which
the kinetic (turbulent) energy is
converted into magnetic energy: the
mechanism relies on magnetic fields to
become stronger when the field lines are
stretched

Saturation. Field growth stops at a
sizeable fraction of the turbulent energy
when magnetic forces become strong
enough to resist the stretching and
folding motions
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when magnetic forces become strong
enough to resist the stretching and
folding motions
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2. Galactic magnetic dynamo

CP, Werhahn, Pakmor, Girichidis, Simpson (2022)
Simulating radio synchrotron emission in star-forming galaxies: small-scale
magnetic dynamo and the origin of the far-infrared–radio correlation

MHD + cosmic ray advection + diffusion:
{

1010, 1011, 3 × 1011, 1012} M⊙
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Time evolution of SFR and energy densities
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cosmic ray (CR) pressure feedback suppresses SFR more in
smaller galaxies

energy budget in disks is dominated by CR pressure

magnetic growth faster in Milky Way galaxies than in dwarfs
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Comparing turbulent and magnetic energy densities
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magnetic energy saturates at the turbulent energy,
εB ∼ εturb = ρδv2/2 (averaged over the disk)

saturation level similar for CR models with diffusion (left) and
without (right)

rotation dominates: εrot = ρv2
φ/2 ∼ 100εturb
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Identifying different growth phases
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CP+ (2022)

1st phase: adiabatic growth with B ∝ ρ2/3 (isotropic collapse)

2nd phase: additional growth at high density ρ with small
dynamical times tdyn ∼ (Gρ)−1/2

3rd phase: growth migrates to lower ρ on larger scales ∝ ρ−1/3
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Studying growth rate with numerical resolution
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CP+ (2022)

faster magnetic growth in higher resolution simulations and
larger halos, numerical convergence for N ≳ 106

1st phase: adiabatic growth (independent of resolution)

2nd phase: small-scale dynamo with resolution-dep. growth rate

Γ = V
L Re1/2

num, Renum = L V
νnum

= 3L V
dcellvth
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Exponential field growth in kinematic regime

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y
[k

pc
]

101 102

dcell [pc]

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x [kpc]

−1.0

−0.5

0.0

0.5

1.0

z
[k

pc
]

t = 0.1 Gyr, M200 = 1012 M�, anisotropic CR diffusion
101 102

√
υ2 [km s−1]

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x [kpc]

10−3 10−2 10−1 100 101 102

√
B2 [µG]

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x [kpc]
CP+ (2022)

corrugated accretion shock dissipates kinetic energy from
gravitational infall, injects vorticity that decays into turbulence,
and drives a small-scale dynamo
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Dynamo saturation on small scales while λB increases
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CP+ (2022)

supersonic velocity shear between the rotationally supported
cool disk and hotter CGM: excitation of Kelvin-Helmholtz body
modes that interact and drive a small-scale dynamo
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Kinetic and magnetic power spectra
Fluctuating small-scale dynamo in different analysis regions
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EB(k) superposition of form factor and turbulent spectrum

pure turbulent spectrum outside steep central B profile
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3. Cosmic rays and non-thermal emission

Werhahn, CP, Girichidis+ (2021a,b,c)
Cosmic rays and non-thermal emission in simulated galaxies
MHD + CR advection + anisotropic diffusion:

{
1010,1011,1012

}
M⊙

steady-state spectra of CR protons, primary & secondary electrons
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Non-thermal emission in star-forming galaxies
previous theoretical modeling:

one-zone steady-state models
(Lacki+ 2010, 2011, Yoast-Hull+ 2013)

1D transport models (Heesen+ 2016)

static Milky Way models
(Strong & Moskalenko 1998, Evoli+ 2008, Kissmann 2014)

our theoretical modeling:

run MHD-CR simulations of galaxies at
different halos masses and SFRs
model steady-state CRs: protons,
primary and secondary electrons
model all radiative processes from radio
to gamma rays
gamma rays: understand pion decay
and leptonic inverse Compton emission
radio: understand magnetic dynamo,
primary and secondary electrons

Bell (2003)

Ajello+ (2020)
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Steady-state cosmic ray spectra
solve the steady-state equation in every cell for each CR population:

N(E)

τesc
− d

dE
[N(E)b(E)] = Q(E)

protons: Coulomb, hadronic and escape losses (re-normalized to εcr)

electrons: Coulomb, bremsstr., IC, synchrotron and escape losses

primaries (re-normalized using Kep = 0.02)
secondaries

steady state assumption is fulfilled in disk and in regions dominating the
non-thermal emission but not at low densities, at SNRs and in outflows
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Christoph Pfrommer Cosmic rays in galaxy formation



Introduction
Cosmic ray transport

Cosmic rays in galaxy formation

Cosmic ray driven winds
Galactic magnetic dynamo
Cosmic rays and non-thermal emission

Steady-state cosmic ray spectra
solve the steady-state equation in every cell for each CR population:

N(E)

τesc
− d

dE
[N(E)b(E)] = Q(E)

protons: Coulomb, hadronic and escape losses (re-normalized to εcr)

electrons: Coulomb, bremsstr., IC, synchrotron and escape losses

primaries (re-normalized using Kep = 0.02)
secondaries

steady state assumption is fulfilled in disk and in regions dominating the
non-thermal emission but not at low densities, at SNRs and in outflows

�3 �2 �1 0 1 2 3
log(⌧CR/⌧all)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
⇥105

�4 �3 �2 �1 0 1

log n [cm�3]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
⇥105

⌧CR/⌧all < 1
⌧CR/⌧all < 0.1

0 10 20 30 40 50
log vz [km/s]

100

101

102

103

104

105

106

⌧CR/⌧all < 1
⌧CR//⌧all < 0.1

�3 �2 �1 0 1 2 3
log(⌧CR/⌧all)

0.0

0.2

0.4

0.6

0.8

1.0
weighted with "CR

�3 �2 �1 0 1 2 3
log(⌧CR/⌧all)

0.0

0.2

0.4

0.6

0.8

1.0
weighted with
synchr. emission

�3 �2 �1 0 1 2 3
log(⌧CR/⌧all)

0.0

0.2

0.4

0.6

0.8

1.0
weighted with
��ray emission

Werhahn+ (2021a)

Christoph Pfrommer Cosmic rays in galaxy formation



Introduction
Cosmic ray transport

Cosmic rays in galaxy formation

Cosmic ray driven winds
Galactic magnetic dynamo
Cosmic rays and non-thermal emission

From a starburst galaxy to a Milky Way analogy
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Comparing CR spectra to Voyager and AMS-02 data
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Comparing the positron fraction to AMS-02 data
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Comparing the positron fraction to AMS-02 data

e  + e  source: pulsars or supernova remnants?+     −

Werhahn, CP+ (2021a)
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Galaxy simulation with cosmic ray-driven wind
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Simulated radio emission: 1012 M⊙ halo
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Simulated radio emission: 1011 M⊙ halo
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Far infra-red – radio correlation
Universal conversion: star formation → cosmic rays → radio
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Radio-ray spectra of starburst galaxies
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synchrotron spectra too steep (cooling + diffusion losses)

thermal free-free emission (high-ν) and synchrotron absorption
(low-ν) required to match (total and central) spectra
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Radio-ray spectra of starburst galaxies
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synchrotron absorption (low-ν) and thermal free-free emission
(high-ν)

required to match (total and central) spectra
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Radio-ray spectra of starburst galaxies
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synchrotron spectra too steep (cooling + diffusion losses)

synchrotron absorption (low-ν) and thermal free-free emission
(high-ν) required to match (total and central) spectra
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Conclusions for cosmic ray physics in galaxies
CR hydrodynamics:

moment expansion similar to radiation hydrodynamics

novel theory of CR transport mediated by Alfvén waves and
coupled to magneto-hydrodynamics

synchrotron harps: CR streaming dominates over diffusion

CR acceleration and feedback in galaxy formation:

small-scale dynamo grows magnetic field to equipartition with
turbulent energy density

CR feedback drives galactic winds & slows down star formation

global LFIR − Lradio reproduced for galaxies with saturated
magnetic fields, scatter due to viewing angle and CR transport

synchrotron absorption (low-ν) and thermal free-free emission
(high-ν) required to flatten cooled radio synchrotron spectra
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PICOGAL: From Plasma KInetics to COsmological GALaxy Formation
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Cosmological galaxy formation
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Cosmic rays in cosmological galaxy simulations

The galaxy formation model
primordial and metal line cooling

sub-resolution model for star formation (Springel+ 03)

mass and metal return from stars to ISM

cold dense gas stabilized by pressurized ISM

thermal and kinetic energy from supernovae modeled
by isotropic wind – launched outside of SF region

black hole seeding and accretion model (Springel+ 05)

thermal feedback from AGN in radio and quasar mode

uniform magnetic field of 10−10 G seeded at z = 128

Simulation suite (Buck, CP+ 2020)

2 galaxies, baryons with 5 × 104 M⊙ ∼ 5 × 106

resolution elements in halo, 2 × 106 star particles

4 models with different CR physics for each galaxy:
no CRs
CR advection
+ CR anisotropic diffusion
+ CR Alfvén wave cooling

The Auriga Project Grand+ (2017)
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Cosmic rays in cosmological galaxy simulations
Auriga MHD models: CR transport changes disk sizes
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Buck, CP, Pakmor, Grand, Springel (2020)
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Cosmic rays in cosmological galaxy simulations
Auriga MHD models: CR transport modifies the circum-galactic medium
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