Self-interacting dark matter

Christoph Pfrommer1

in collaboration with

L. van den Aarssen, T. Bringmann,
F.-Y. Cyr-Racine, K. Sigurdson, M. Vogelsberger, J. Zavala

1Heidelberg Institute for Theoretical Studies, Germany

Apr 20, 2015 / Perimeter Institute
Searching for dark matter (DM)

correct relic density \rightarrow DM annihilation in the Early Universe

DM production:
\[\chi \chi \rightarrow q q \]

DM annihilation:
\[\chi \chi \rightarrow q q \]

DM scattering:
\[\chi \chi \rightarrow q q \]

DM production: particle colliders

DM annihilation: indirect detection

DM scattering: direct detection

(slide concept Feng)
Outline

1. Standard WIMPS
 - Chemical decoupling
 - Kinetic decoupling
 - Smallest protohalos

2. Self-interacting WIMPS
 - Sommerfeld effect
 - Small-scale problems
 - A solution to all ΛCDM problems

3. Cosmological simulations
Outline

1. Standard WIMPS
 - Chemical decoupling
 - Kinetic decoupling
 - Smallest protohalos

2. Self-interacting WIMPS
 - Sommerfeld effect
 - Small-scale problems
 - A solution to all ΛCDM problems

3. Cosmological simulations
The WIMP “miracle”

“freeze-out”: annihilation rate drops below expansion rate H

\[\frac{dn_\chi}{dt} + 3Hn_\chi = -\langle \sigma v \rangle (n^2_\chi - n^2_{\chi,\text{eq}}), \quad \langle \sigma v \rangle : \chi\chi \rightarrow \text{SM SM} \]
The WIMP “miracle”

- “freeze-out”: annihilation rate drops below expansion rate H → number density of Weakly Interacting Massive Particles:

$$\frac{dn_\chi}{dt} + 3Hn_\chi = -\langle \sigma v \rangle \left(n_\chi^2 - n_{\chi, eq}^2\right), \quad \langle \sigma v \rangle : \chi\chi \rightarrow \text{SM SM}$$

- assuming a particle χ, initially in thermal equilibrium, with a relic density

$$\Omega_\chi \sim \frac{1}{m_{\text{Pl}} T_0 \langle \sigma v \rangle} \sim \frac{m_\chi^2}{m_{\text{Pl}} T_0 g_\chi^4},$$

$$m_\chi \sim m_{\text{weak}} \sim 100 \text{ GeV} \quad g_\chi \sim g_{\text{weak}} \sim 0.6 \quad \{ \Omega_\chi \sim 0.1 \}$$
The WIMP “miracle”

- “freeze-out”: annihilation rate drops below expansion rate H → number density of Weakly Interacting Massive Particles:

$$\frac{dn_\chi}{dt} + 3Hn_\chi = -\langle \sigma v \rangle (n^2_\chi - n^2_{\chi,eq}), \quad \langle \sigma v \rangle : \chi\chi \rightarrow \text{SM SM}$$

- assuming a particle χ, initially in thermal equilibrium, with a relic density

$$\Omega_\chi \sim \frac{1}{m_{Pl}T_0 \langle \sigma v \rangle} \sim \frac{m^2_\chi}{m_{Pl}T_0 g^4_\chi},$$

$$m_\chi \sim m_{\text{weak}} \sim 100 \text{ GeV} \quad \{\Omega_\chi \sim 0.1\}$$

- remarkable coincidence: particle physics independently predicts particles with the right density to be dark matter
Freeze-out ≠ decoupling!

- **WIMP** interactions with *heat bath* of SM particles:

 ![Diagram showing WIMP interactions with SM particles](image)

 - Boltzmann suppression of n_χ:
 - scattering process more frequent
 - continue even after *chemical decoupling* ("freeze-out") at $T_{cd} \sim m_\chi/25$

 - **Kinetic decoupling** much later: $\tau(T_{kd}) \equiv N_{coll}/\Gamma_{el} \sim H^{-1}(T_{kd})$
 - random walk in momentum space: $N_{coll} \sim m_\chi/T$
 (Schmid+ 1999, Green+ 2005)

Christoph Pfrommer
Self-interacting dark matter
Kinetic decoupling

- evolution of phase space density f_χ given by the full Boltzmann equation in FRW space time:

$$E \left(\partial_t - H \mathbf{p} \cdot \nabla \mathbf{p} \right) f_\chi = C \left[f_\chi \right]$$

- 1st moment ($\int d^3p$) recovers the familiar continuity equation:

$$\frac{d n_\chi}{dt} + 3 H n_\chi = - \langle \sigma v \rangle \left(n_\chi^2 - n_{\chi,eq}^2 \right)$$

- consider the 2nd moment ($\int d^3p \mathbf{p}^2$) and introduce

$$T_\chi n_\chi \equiv \int \frac{d^3p}{(2\pi)^3} \frac{\mathbf{p}^2}{3m_\chi} f_\chi(\mathbf{p})$$

→ analytic treatment possible without assumptions about $f_\chi(\mathbf{p})$

Thermal history of WIMPs

- resulting ODE for T_χ

$$\frac{dy}{dx} = 2 \frac{m_\chi c(T)}{H \tilde{g}^{-1/2}} \left(1 - \frac{T_\chi}{T}\right)$$

example:

$m_\chi = 100$ GeV

$|\mathcal{M}|^2 \sim g_Y^4 (E_\chi/m_\chi)^2$

- fast transition allows definition of T_{kd}:

$$T_\chi = \begin{cases}
T & \text{for } T \gtrsim T_{kd}, \\
T_{kd} (a_{kd}/a)^2 & \text{for } T \lesssim T_{kd}
\end{cases}$$

Bringmann & Hofmann (2007), Bringmann (2009)
The smallest protohalos

- **free streaming** of WIMPS after \(t_{kd} \) at the thermal speed of decoupling erases small-scale fluctuations (Green+ 2005)

- initial coupling between WIMPS and the radiation field → **acoustic oscillations** in the power-spectrum at the horizon scale of kinematic decoupling (Loeb & Zaldarriaga 2005, Bertschinger 2006)
The smallest protohalos

- **Free streaming** of WIMPS after t_{kd} at the thermal speed of decoupling erases small-scale fluctuations (Green+ 2005)

- Initial coupling between WIMPS and the radiation field → acoustic oscillations in the power-spectrum at the horizon scale of kinematic decoupling (Loeb & Zaldarriaga 2005, Bertschinger 2006)

- **Cutoff** in the power spectrum corresponds to smallest gravitationally bound objects in the universe

- Strong dependence on particle physics properties, no “typical” value of $M_{\text{cut}} \sim 10^{-6} M_\odot$ (Profumo+ 2006)
Consequences

- **indirect detection experiments through WIMP annihilation:**

\[\Phi_{\text{SM}} \propto \langle \rho^2 \rangle = (1 + \text{BF}) \langle \rho \chi \rangle^2, \]
\[\text{BF} \propto \log \left(\frac{M_{\text{halo}}}{M_{\text{min}}} \right) \]
(Pinzke+ 2011, Gao+ 2012, Ludlow+ 2014)

- **flux depends on astrophysics, particle physics, detector properties:**

\[N_\gamma = \left[\int_{\text{LOS}} \rho^2 \, dI_\chi \right] \frac{\langle \sigma v \rangle}{2M_\chi^2} \left[\int_{E_{\text{th}}}^{M_\chi} \left(\frac{dN_\gamma}{dE} \right) \right]_{\text{SUSY}} A_{\text{eff}}(E) \, dE \, \frac{\Delta \Omega}{4\pi} \, \tau_{\text{exp}} \]
Consequences

- indirect detection experiments through WIMP annihilation:

\[
\Phi_{\text{SM}} \propto \langle \rho^2 \rangle = (1 + BF) \langle \rho \chi \rangle^2,
\]

\[
BF \propto \log(M_{\text{halo}}/M_{\text{min}})
\]

(Pinzke+ 2011, Gao+ 2012, Ludlow+ 2014)

- flux depends on astrophysics, particle physics, detector properties:

\[
N_\gamma = \left[\int_{\text{LOS}} \rho^2 \, dI_\chi \right] \left[\int_{\chi_{\text{th}}}^{\chi_{\text{max}}} \left(\frac{dN_\gamma}{dE} \right)_{\text{SUSY}} A_{\text{eff}}(E) \, dE \right] \frac{\Delta \Omega}{4\pi} \tau_{\exp}
\]

- fluctuations in the event rate of direct detection experiments

- gravitational lensing of substructures \rightarrow flux anomalies

- Lyman-α forest . . .
Outline

1. Standard WIMPS
 - Chemical decoupling
 - Kinetic decoupling
 - Smallest protohalos

2. Self-interacting WIMPS
 - Sommerfeld effect
 - Small-scale problems
 - A solution to all ΛCDM problems

3. Cosmological simulations

Christoph Pfrommer
Self-interacting dark matter
WIMPS with long-range forces

- Annihilation
- Self-scattering
- Scattering

Christoph Pfrommer Self-interacting dark matter
Sommerfeld effect

- **kinematics:** non-relativistic DM particle χ interacts with light force carrier ϕ ($m_\phi \ll m_\chi$)
- **repeated exchange of ϕ:** each “rung” of ladder contributes at $O(\alpha/\nu)$
 \rightarrow resummation necessary

- **long range interaction:**
 potential distorts wave function

 $$\left(-\frac{\nabla^2}{m_\chi} + V\right) \psi(r) = m_\chi \nu^2 \psi(r)$$

 $\Rightarrow \sigma = S(\nu) \sigma_{\chi\chi \rightarrow \phi\phi}$, with $S(\nu) = |\psi(0)|^2$

- **short-range interaction:**
 standard QFT result

Arkani-Hamed+ (2009)

Christoph Pfrommer
Self-interacting dark matter
Enhancement factor

- Coulomb potential: analytic solution
 \[S(v) = \frac{\pi \alpha / v}{1 - \exp(-\pi \alpha / v)} \quad \text{as} \quad v \to 0 \quad \frac{\pi \alpha}{v} \]

- Yukawa potential: numerical solution
 \[S(v) \propto v^{-1} \quad \text{on resonance} \]
 \[S(v) \propto v^{-2} \quad \text{saturation for small} \quad v \quad \text{for} \quad m_{\phi} \lesssim 100 \text{ MeV}, \phi \quad \text{can only decay into leptons (e, } \mu) \]
 \[\rightarrow \text{appearance of resonances near bound states} \]
Enhancement factor

- **Coulomb potential:** analytic solution
 \[S(\nu) = \frac{\pi \alpha / \nu}{1 - \exp(-\pi \alpha / \nu)} \]
 \[\nu \to 0 \quad \frac{\pi \alpha}{\nu} \]

- **Yukawa potential:** numerical solution
 \[S \propto \nu^{-1} \]
 \[S \propto \nu^{-2} \]
 \[\text{saturation for small } \nu \]

 → appearance of resonances near bound states

 - off resonance: \(S \propto \nu^{-1} \)
 - on resonance: \(S \propto \nu^{-2} \)

Enhancement factor

- **Coulomb potential**: analytic solution

\[S(\nu) = \frac{\pi \alpha/\nu}{1 - \exp(-\pi \alpha/\nu)} \quad \nu \rightarrow 0 \rightarrow \frac{\pi \alpha}{\nu} \]

- **Yukawa potential**: numerical solution
 - appearance of resonances near bound states
 - off resonance: \(S \propto \nu^{-1} \)
 - on resonance: \(S \propto \nu^{-2} \)
 - saturation for small \(\nu \)

- for \(m_{\phi} \lesssim 100 \text{ MeV} \), \(\phi \) can only decay into leptons (e, \(\mu \))

\[\rightarrow \text{leptophilic DM} \]

Lattanzi, Silk (2009)
\(\Lambda \)CDM cosmology

a great success

story on **large scales**

- **Springel**+ (2006)
- **Kuhlen**+ (2012)

Supernova Cosmology Project

No Big Bang

- Union2.1 SN Ia Compilation
- BAO
- CMB

Cosmic
Cluster
Galactic

- non-linear (simulation)
- linear (analytic)

Baryon Acoustic Oscillations

- CDM
- ADM
- WDM (8 keV)

\(\Lambda \)CDM cosmology

Christoph Pfrommer

Self-interacting dark matter
1. Missing satellites?

Moore+ (1999)

→ many more satellites in simulations of MW-sized galaxies than observed
ΛCDM small-scale problems

1. Missing satellites?
 - Moore+ (1999)
 - Many more satellites in simulations of MW-sized galaxies than observed

2. Cusps or cores?
 - Blok+ (2001)
 - Cuspy inner density profiles predicted by simulations not found in observations

Christoph Pfrommer
Self-interacting dark matter
Standard WIMPs
Self-interacting WIMPS
Cosmological simulations

Sommerfeld effect
Small-scale problems
A solution to all ΛCDM problems

ΛCDM small-scale problems

1. Missing satellites?
 - Moore+ (1999)
 → many more satellites in simulations of MW-sized galaxies than observed

2. Cusps or cores?
 - Blok+ (2001)
 → cuspy inner density profiles predicted by simulations not found in observations

3. Too big to fail?
 - Boylan-Kolchin+ (2011)
 → most massive sub-halos in simulations too dense to host observed brightest dwarf satellites

Christoph Pfrommer
Self-interacting dark matter
Inner DM profile in galaxy groups and clusters

Star formation efficiency $\frac{M_*}{M_{200}}/(\Omega_b/\Omega_m)$

[Graph showing star formation efficiency vs. θ_{Ein} (arcsecond)]

- Galaxies
- Groups
- N13 clusters

Salp.+NFW
Salp.+Contract
Chab.+NFW
Chab.+Contract
Salp.+Core

Sonnentfeld+ 2012 "Jackpot"
Sonnentfeld+ 2015
Oguri+ 2014
Grillo+ 2012
Treu & Koopmans 2004

Newman+ (2015)
Solutions?

many possibilities, no consensus reached yet:

- **astrophysical solutions:**
 increased gas entropy, suppress cooling efficiency, SN feedback, large velocity anisotropy, other baryonic feedback, increased stochasticity of galaxy formation, small MW mass, . . .

- **dark matter solutions:**
 warm DM, interacting DM, DM from late decays, large annihilation rates, condensates, . . .

- **all have shortcomings** and/or solve at most 2 problems at the time!
Solutions?

velocity-dependent self-interacting dark matter:

- scattering cross-section for **Yukawa potential** Khrapak+ (2003)
 \[\sigma_{\chi \chi} = \text{const.} \] unnatural from particle physics viewpoint!

- elastic DM self-scattering is completely analogous to screened Coulomb scattering in a plasma
velocity-dependent self-interacting dark matter:

- scattering cross-section for **Yukawa potential** Khrapak+ (2003)
 \[\sigma_{\chi \bar{\chi}} = \text{const. unnatural from particle physics viewpoint!} \]

- elastic DM self-scattering is completely analogous to screened Coulomb scattering in a plasma

- cored profiles possible without violating astrophysical constraints
 Feng+ (2010), Loeb & Weiner (2011)

- **N-body simulations**: “too big to fail” problem avoided
 Vogelsberger+ (2012)

- what about missing satellites?

Loeb & Weiner (2011)
Our model

van den Aarssen, Bringmann, C.P. (2012)

- assume **light vector mediator** coupling to dark matter and neutrinos:

\[\mathcal{L}_{\text{int}} \supset -g_\chi \bar{\chi} V \chi - g_\nu \bar{\nu} \nu \]

- **annihilation**
 - → relic density
 - → indirect 4ν detection signal from galactic center(?)

- **self-scattering**
 - → changes inner density and velocity profiles of dwarf galaxies

- **scattering**
 - → large M_{min}
"Cusp vs. core" and "too big to fail" problems

- demand correct relic density
 → unique relation between \((v_{\text{max}}, \sigma_{\text{max}})\) and \((m_\chi, m_\nu)\)

\[
\begin{align*}
\sigma_{\text{max}} / m_\chi \ [\text{cm}^2 \text{ g}^{-1}] \\
v_{\text{max}} \ [\text{km s}^{-1}]
\end{align*}
\]

ruled out by astrophysics

not enough flattening of cuspy profiles

van den Aarssen, Bringmann & Pfrommer (2012)
DM scattering off standard model particles

- free-streaming of WIMPs after kinetic decoupling creates cutoff in power spectrum
- acoustic oscillations leads to similar cutoff
- cutoff scale is set by size of horizon at KD: late KD \rightarrow high M_{min}
- $M_{\text{min}} = \max(M_{fs}, M_{ao})$: only objects with $M \geq M_{\text{min}}$ form
DM scattering off standard model particles

- Free-streaming of WIMPs after kinetic decoupling creates cutoff in power spectrum
- Acoustic oscillations leads to similar cutoff
- Cutoff scale is set by size of horizon at KD: late KD \rightarrow high M_{min}
- $M_{\text{min}} = \max(M_{fs}, M_{ao})$: only objects with $M \geq M_{\text{min}}$ form

Scalar mediator:
- Scatters off ϕ, μ^\pm, e^\pm
- Saturation at $M_{\text{min}} \sim 10^3 \, M_\odot$
- ν's negligible: $|M_{\phi l \rightarrow \phi l}|^2 \propto m_l^2$

Vector mediator:
- ν's contribute: $|M_{\nu l \rightarrow \nu l}|^2 \propto E_{\nu}^2$
- M_{min} increases to $\mathcal{O}(10^{11} \, M_\odot)$

van den Aarssen+ (2012)
“Missing satellites” problem

- now compute M_{min} from kinetic decoupling temperature . . .

In this simple phenomenological model, it is possible to simultaneously solve all small-scale problems of ΛCDM!
Cored central density profiles of clusters

- velocity-dependent DM self-scattering cores out central density slopes in clusters with rate
 \[\Gamma \sim \frac{\rho}{m_\chi} \langle \sigma v \rangle \sim H \]

- ellipticals/clusters, \(f_s = 10 - 100 \):
 \[\Gamma \sim \frac{f_s \rho}{m_\chi} \frac{\langle \sigma v \rangle}{f_s \max} \]

Loeb & Weiner (2011)
Cored central density profiles of clusters

- velocity-dependent DM self-scattering cores out central density slopes in clusters with rate

\[\Gamma \sim \frac{\rho}{m_\chi} \langle \sigma v \rangle \sim H \]

- ellipticals/clusters, \(f_s = 10 - 100 \):

\[\Gamma \sim \frac{f_s \rho}{m_\chi} \frac{\langle \sigma v \rangle}{f_s} \]

- using \(\rho \sim 1/r \) for \(r \ll r_s \):

\[\frac{r_{\text{core}}}{r_{200}} \bigg|_{\text{cluster}} \sim \frac{1}{f_s} \frac{r_{\text{core}}}{r_{200}} \bigg|_{\text{dwarf}} \sim \frac{1}{f_s 10} \Rightarrow r_{\text{core}}(10^{15} M_\odot) \sim O(1-10 \text{ kpc}) \]

- need simulations to understand interplay of hierarchical evolution and determination of cluster-\(r_{\text{core}} \): merging history → scatter
small-scale problems of ΛCDM can be solved by a DM model with:

- velocity-dependent self-interactions mediated by (sub-)MeV vector:
 - transforms cusps to cores and solves “too big to fail” problem

- much later kinetic decoupling than in standard case follows naturally for vector mediator coupling to neutrinos:
 - potentially solves “missing satellites” problem

- predicts cores in clusters on scales $\mathcal{O}(1 – 10 \text{ kpc})$

→ need further model building and simulations to confirm
Outline

1. Standard WIMPS
 - Chemical decoupling
 - Kinetic decoupling
 - Smallest protohalos

2. Self-interacting WIMPS
 - Sommerfeld effect
 - Small-scale problems
 - A solution to all \(\Lambda \)CDM problems

3. Cosmological simulations

Christoph Pfrommer
Self-interacting dark matter
SIDM simulations: models

Vogelsberger, Zavala, Cyr-Racine, Pfrommer, Bringmann, Sigurdson, in prep.
SIDM simulations: large-scale structure

Vogelsberger, Zavala, Cyr-Racine, Pfrommer, Bringmann, Sigurdson, in prep.
SIDM simulations: Milky Way-sized halos

Vogelsberger, Zavala, Cyr-Racine, Pfrommer, Bringmann, Sigurdson, in prep.
SIDM simulations: power spectrum and mass function

Vogelsberger, Zavala, Cyr-Racine, Pfrommer, Bringmann, Sigurdson, in prep.
SIDM simulations: density profile of MW-sized halo

Vogelsberger, Zavala, Cyr-Racine, Pfrommer, Bringmann, Sigurdson, in prep.
SIDM simulations: subhalo abundances

Vogelsberger, Zavala, Cyr-Racine, Pfrommer, Bringmann, Sigurdson, in prep.
SIDM simulations: internal subhalo structure

Vogelsberger, Zavala, Cyr-Racine, Pfrommer, Bringmann, Sigurdson, in prep.
If DM searches (production, indirect, and direct experiments) continue to deliver null results, we need to search for alternative windows:

- **small-scale features of ΛCDM cosmology**: abundances, density profiles, ... in the most DM-dominated objects (dwarfs, clusters)
- **particle physics model building** that addresses anomalies (beam dump experiments, ...)
- **develop effective theory for structure formation** that connects particle physics properties to effective parameters of structure formation