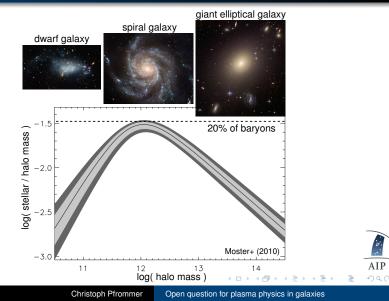
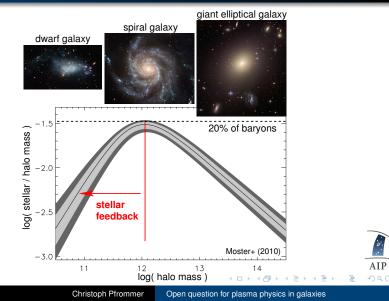
## *Open question for plasma physics in galaxies: ISM, CGM and galactic winds*

Christoph Pfrommer (AIP


Plasma Observatory: Astrophysics Science Working Group, May 2025

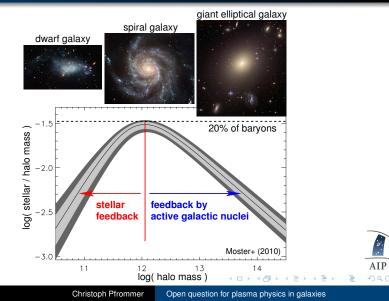
an




Galactic winds Plasma conditions Puzzles in galaxy formation Multi-phase ISM

### Puzzles in galaxy formation




Galactic winds Plasma conditions Puzzles in galaxy formation Multi-phase ISM

### Puzzles in galaxy formation



Galactic winds Plasma conditions Puzzles in galaxy formation Multi-phase ISM

### Puzzles in galaxy formation

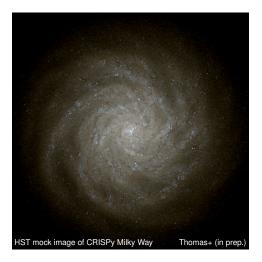


Galactic winds Plasma conditions Puzzles in galaxy formation Multi-phase ISM

### Stellar feedback



super wind in M82


NASA/JPL-Caltech/STScI/CXC/UofA

- thermal pressure provided by supernovae or active galactic nuclei?
- radiation pressure and photoionization by massive stars and quasars?
- pressure of cosmic rays (CRs) that are accelerated at supernova shocks?



Galactic winds Plasma conditions Puzzles in galaxy formation Multi-phase ISM

### Cosmic ray transport in galaxies



- CR transport in galaxies demands modeling non-linear Landau damping (in warm/hot phase) and ion-neutral damping (in disk)
- this requires resolving the multi-phase structure of the ISM
- development of CRISP framework (Cosmic Rays and InterStellar Physics, Thomas+ 2025)



Galactic winds Plasma conditions Puzzles in galaxy formation Multi-phase ISM

### Multi-phase ISM modeling

# CRISP framework

CR Sism CR Sism

Thomas, CP, Pakmor (2025)

Puzzles in galaxy formation Multi-phase ISM

# Multi-phase ISM modeling









Full  $H - H_2 - He$  chemistry sets ionization degree

First ionization stages of C - O - Si low temperature cooling

Photoelectric heating by dust

Thomas, CP, Pakmor (2025)

Puzzles in galaxy formation Multi-phase ISM

# Multi-phase ISM modeling

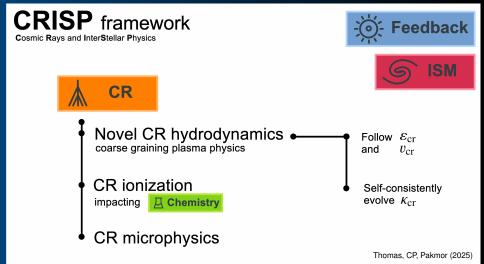






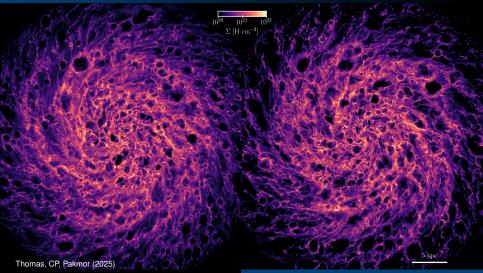
Improved SNe treatment (manifestly isotropic) and stellar winds

FUV NUV OPT radiation fields (reverse ray tracing)


absorbed by dust — impacting 📙 Chemistry

Metal enrichment

Thomas, CP, Pakmor (2025)


Puzzles in galaxy formation Multi-phase ISM

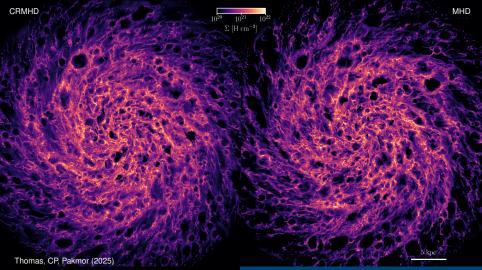
### Multi-phase ISM modeling



Cosmic ray driven winds Cosmic rays in cosmological galaxies

## Multi-phase ISM modeling




Christoph Pfrommer

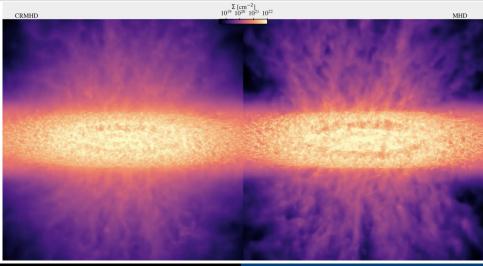
Open question for plasma physics in galaxies

Cosmic ray driven winds Cosmic rays in cosmological galaxies

### Multi-phase ISM modeling

Cosmic rays barely affect the ISM because ion-neutral damping erases Alfvén waves

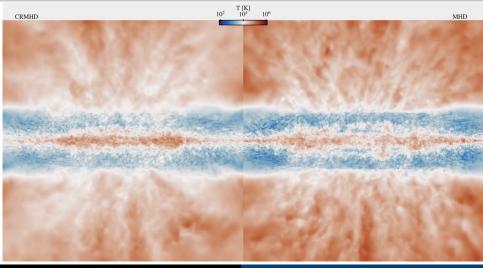



Christoph Pfrommer

Open question for plasma physics in galaxies

Cosmic ray driven winds Cosmic rays in cosmological galaxies

### Simulated Milky Way: surface density


Cosmic rays drive galactic winds, ram pressure propells mainly galactic fountains



Cosmic ray driven winds Cosmic rays in cosmological galaxies

### Simulated Milky Way: temperature

Galactic winds without cosmic rays are much hotter



Cosmic ray driven winds Cosmic rays in cosmological galaxies

### Multi-phase ISM modeling

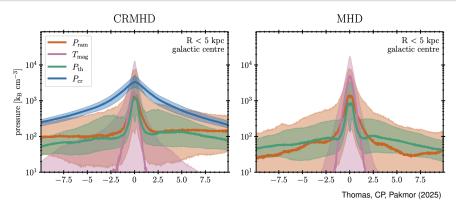
Cosmic rays make galactic winds much denser

#### CRMHD



Thomas, CP, Pakmor (2025)

Christoph Pfrommer


Open question for plasma physics in galaxies

 $5 \mathrm{kpc}$ 

MHD

Cosmic ray driven winds Cosmic rays in cosmological galaxies

### Cosmic ray driven wind: mechanism



 CR pressure gradient dominates over thermal and ram pressure gradient and drives outflow:

$$| \boldsymbol{
abla} \boldsymbol{P}_{\mathsf{cr}} + \boldsymbol{
abla} \boldsymbol{P}_{\mathsf{th}} | > 
ho | \boldsymbol{
abla} \Phi$$

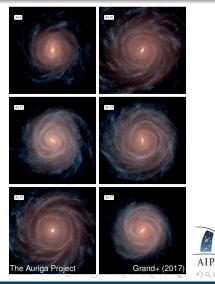


Cosmic ray driven winds Cosmic rays in cosmological galaxies

### Cosmological galaxy formation



Cosmic ray driven winds Cosmic rays in cosmological galaxies


### Cosmic rays in cosmological galaxy simulations

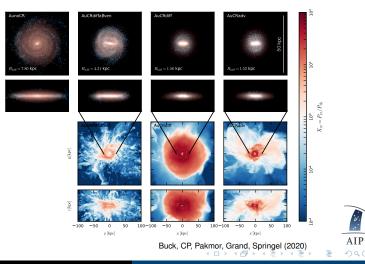
### The galaxy formation model

- primordial and metal line cooling
- sub-resolution model for star formation (Springel+ 03)
- mass and metal return from stars to ISM
- cold dense gas stabilized by pressurized ISM
- thermal and kinetic energy from supernovae modeled by isotropic wind – launched outside of SF region
- black hole seeding and accretion model (Springel+ 05)
- thermal feedback from AGN in radio and quasar mode
- uniform magnetic field of  $10^{-10}$  G seeded at z = 128

### Simulation suite (Buck, CP+ 2020)

- 2 galaxies, baryons with  $5\times10^4~M_\odot\sim5\times10^6$  resolution elements in halo,  $2\times10^6$  star particles
- 4 models with different CR physics for each galaxy:
  - no CRs
  - CR advection
  - + CR anisotropic diffusion
  - + CR Alfvén wave cooling



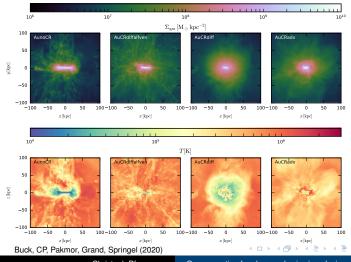

Christoph Pfrommer

Open question for plasma physics in galaxies

Cosmic ray driven winds Cosmic rays in cosmological galaxies

# Cosmic rays in cosmological galaxy simulations

Auriga MHD models: CR transport changes disk sizes




Introduction Galactic winds

Cosmic ray driven winds Cosmic rays in cosmological galaxies

### Cosmic rays in cosmological galaxy simulations

Auriga MHD models: CR transport modifies the circum-galactic medium



Christoph Pfrommer

Open question for plasma physics in galaxies

AIP

The interstellar plasma The circumgalactic plasma

### Plasma formulae

- Plasma beta  $\beta = \frac{P_{\text{th}}}{P_B}$
- Sonic Mach number  $\mathcal{M}_s = \frac{V}{C_s}$
- Alfvénic Mach number  $\mathcal{M}_{A} = \frac{V}{V_{A}} = \mathcal{M}_{s} \sqrt{\frac{\gamma}{2}\beta}$
- Spitzer mean free path:

$$\lambda_{\rm mfp} \sim \frac{1}{\pi n_{\rm i} \ln \Lambda} \left(\frac{k_{\rm B} T_{\rm e}}{Z e^2}\right)^2, \text{ where } n_{\rm i} = x_{\rm ion} n_{\rm i}$$
$$\ln \Lambda \sim \ln \frac{\lambda_{\rm D}}{r_{\rm e}} \sim \ln \sqrt{\frac{(k_{\rm B} T)^3}{n_{\rm e} 4 \pi Z^3 e^6}}$$

- Alfvén speed  $v_A = \frac{B}{\sqrt{\mu_0 n_i m_i}}$
- Plasma frequency  $\omega_{\rm e} = \sqrt{\frac{e^2 n_{\rm e}}{\epsilon_0 m_{\rm e}}} = \sqrt{\frac{m_{\rm i}}{m_{\rm e}}} \omega_{\rm i}$
- Cyclotron frequency  $\Omega_{i0} = \frac{eB}{m_i}$

• Ion skin depth 
$$d_i = \frac{V_A}{\Omega_{i0}} = \frac{c}{\omega_i}$$



・ 同 ト ・ ヨ ト ・ ヨ ト

The interstellar plasma The circumgalactic plasma

### Plasma parameters in the ISM

|                                       | ISM                                 |                    |                     |
|---------------------------------------|-------------------------------------|--------------------|---------------------|
| parameters                            | cold ( $x_{\rm ion} \sim 10^{-3}$ ) | warm               | hot                 |
| T [K]                                 | 10                                  | 10 <sup>4</sup>    | $10^{6} - 10^{7}$   |
| <i>n</i> [cm <sup>-3</sup> ]          | 10 <sup>3</sup>                     | 1                  | $10^{-2} - 10^{-3}$ |
| $\lambda_{\rm mfp}$ [cm]              | 10 <sup>6</sup>                     | $5 \times 10^{11}$ | $3 	imes 10^{17}$   |
| <i>Β</i> [μG]                         | 30                                  | 3                  | 0.3                 |
| $v_{\rm A}  [{\rm km}  {\rm s}^{-1}]$ | 60                                  | 6                  | 6                   |
| β                                     | 0.03                                | 3                  | 300                 |
| $\mathcal{M}_{s}$                     | 0.1 – 1                             | 0.3 – 10           | 0.1                 |
| $\mathcal{M}_{A}$                     | 0.01                                | 0.5 – 20           | 0.5                 |
| $\omega_{\rm e}  [{\rm s}^{-1}]$      | $5	imes 10^4$                       | $5 	imes 10^4$     | $5 	imes 10^3$      |
| $\Omega_{i0} [s^{-1}]$                | 0.3                                 | $3 	imes 10^{-2}$  | $3	imes 10^{-3}$    |
| d <sub>i</sub> [cm]                   | $2 	imes 10^7$                      | $2 \times 10^7$    | $2 	imes 10^8$      |



э

프 + + 프 +

< 🗇 ▶

The interstellar plasma The circumgalactic plasma

### Plasma parameters in the CGM and ICM

| parameters                            | CGM                | ICM                 |
|---------------------------------------|--------------------|---------------------|
| <i>T</i> [K]                          | 10 <sup>6</sup>    | $10^7 - 10^8$       |
| <i>n</i> [cm <sup>-3</sup> ]          | 10 <sup>-3</sup>   | $10^{-3} - 10^{-4}$ |
| $\lambda_{mfp}$ [cm]                  | $3 \times 10^{17}$ | $5 	imes 10^{21}$   |
| <i>Β</i> [μG]                         | 0.5                | 1                   |
| $v_{\rm A}  [{\rm km}  {\rm s}^{-1}]$ | 30                 | 100                 |
| β                                     | 10                 | 100                 |
| $\mathcal{M}_{s}$                     | 0.1                | 0.1 – 2             |
| $\mathcal{M}_{A}$                     | 0.3                | 1 – 20              |
| $\omega_{\rm e}  [{\rm s}^{-1}]$      | $1 	imes 10^3$     | $1 	imes 10^3$      |
| $\Omega_{i0} [s^{-1}]$                | $5	imes 10^{-3}$   | $1 \times 10^{-2}$  |
| <i>d</i> i [cm]                       | $7 	imes 10^8$     | $7 	imes 10^8$      |



< ∃⇒

The interstellar plasma The circumgalactic plasma

### Review on cosmic ray feedback

Astron Astrophys Rev (2023) 31:4 https://doi.org/10.1007/s00159-023-00149-2

**REVIEW ARTICLE** 



#### Cosmic ray feedback in galaxies and galaxy clusters

A pedagogical introduction and a topical review of the acceleration, transport, observables, and dynamical impact of cosmic rays

#### Mateusz Ruszkowski<sup>1,3</sup> · Christoph Pfrommer<sup>2</sup>

COSMO FILE FILE



The interstellar plasma The circumgalactic plasma

### PICOGAL: From Plasma KInetics to COsmological GALaxy Formation



না AIP গৎল

**Christoph Pfrommer** 

Open question for plasma physics in galaxies