Cosmic-ray driven plasma instabilities

Christoph Pfrommer

Collaborators: Mohamad Shalaby, Rouven Lemmerz

AIP Potsdam

2nd July 2025

Cosmic Rays Impact Galaxies

Cosmic rays

- drive galactic winds
- regulate star formation
 - amplify magnetic fields through microphysical interactions

Thomas, CP, Pakmor 2025

Connecting the Scales

Gyroresonant instabilites

Impact of cosmic ray interactions

Scale \gtrsim kpc (10⁸ AU)

Scale ~ AU

What is Gyroresonance?

Plane wave: $\exp(-ik(x-v_{\text{wave}}t))$

What is Gyroresonance?

Plane wave: $\exp(-ik(x-v_{\text{wave}}t))$

Cosmic ray: v_{\parallel} movement along B_0

 $\Omega_{\rm cr}$ gyration frequency

What is Gyroresonance?

Plane wave: $\exp(-ik(x-v_{\text{wave}}t))$

Cosmic ray: v_{\parallel} movement along B_0

 $\Omega_{\rm cr}$ gyration frequency

Resonance condition:

Gyration Dopplershift wave frequency
$$\Omega_{\rm cr} + kv_{\parallel} = kv_{\rm wave}$$

Resonant wave appears **static** to CR

Gyroresonance in Dispersion Relation

Shalaby+ 2023

Gyroresonance in Dispersion Relation

Shalaby+ 2023

Jacob & CP

 electric fields vanish in the Alfvén wave frame:

$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

für sdam

Jacob & CP

 electric fields vanish in the Alfvén wave frame:

$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

• thus energy is conserved:

$$p^2 = p_{||}^2 + p_{\perp}^2 = \text{const.}$$

sdam

Jacob & CP

 electric fields vanish in the Alfvén wave frame:

$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

thus energy is conserved:

$$p^2 = p_{\parallel}^2 + p_{\perp}^2 = \text{const.}$$

work out Lorentz force:

$$\mathbf{F}_{\mathrm{L}} = q \frac{\mathbf{v} \times \mathbf{B}}{c}$$

Jacob & CP

electric fields vanish in the Alfvén wave frame:

$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

thus energy is conserved:

$$p^2 = p_{\parallel}^2 + p_{\perp}^2 = \text{const.}$$

work out Lorentz force:

$$\mathbf{F}_{\mathrm{L}} = q \frac{\mathbf{v} \times \mathbf{B}}{c}$$

which changes p_{\parallel} and thereby the pitch-angle cosine $\mu = \cos \theta = \frac{\mathbf{B}}{|\mathbf{B}|} \cdot \frac{\mathbf{p}}{|\mathbf{p}|}$

$$\mu = \cos \theta = \frac{\mathbf{B}}{|\mathbf{B}|} \cdot \frac{\mathbf{p}}{|\mathbf{p}|}$$

Jacob & CP

=> But why do waves grow?

electric fields vanish in the Alfvén wave frame:

$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

thus energy is conserved:

$$p^2 = p_{\parallel}^2 + p_{\perp}^2 = \text{const.}$$

work out Lorentz force:

$$\mathbf{F}_{\mathrm{L}} = q \frac{\mathbf{v} \times \mathbf{B}}{c}$$

which changes p_{\parallel} and thereby the pitch-angle cosine $\mu = \cos \theta = \frac{\mathbf{B}}{|\mathbf{B}|} \cdot \frac{\mathbf{p}}{|\mathbf{p}|}$

$$\mu = \cos \theta = \frac{\mathbf{B}}{|\mathbf{B}|} \cdot \frac{\mathbf{p}}{|\mathbf{p}|}$$

Goal: understand collective behaviour of many CRs

- Goal: understand collective behaviour of many CRs
- v_{\parallel} changes (Lorentz force)
 - \circ acceleration depends on $\sim \sin(\varphi)$

- Goal: understand collective behaviour of many CRs
- v_{\parallel} changes (Lorentz force)
 - \circ acceleration depends on $\sim \sin(\varphi)$
- CRs align rotational phase with wave

- Goal: understand collective behaviour of many CRs
- $ullet v_{\parallel}$ changes (Lorentz force)
 - \circ acceleration depends on $\sim \sin(\varphi)$
- CRs align rotational phase with wave
- CRs bunch up

fluid-PIC simulation (Lemmerz+ 2025)

- Goal: understand collective behaviour of many CRs
- v_{\parallel} changes (Lorentz force)
 - \circ acceleration depends on $\sim \sin(\varphi)$
- CRs align rotational phase with wave
- CRs bunch up
- CR current wave interacts with EM wave

- Goal: understand collective behaviour of many CRs
- v_{\parallel} changes (Lorentz force)
 - \circ acceleration depends on $\sim \sin(\varphi)$
- CRs align rotational phase with wave
- CRs bunch up
- CR current wave interacts with EM wave

Gyroresonance with different waves

fluid-PIC simulation

 $t = 0.70t_{\text{saturation}}$

Forward Alfvén, Whistler

Backward Alfvén

Gyroresonance with different waves

Forward Alfvén, Whistler

 $t = 0.85t_{\text{saturation}}$

Backward Alfvén

Bunching theory

- → Bunching in gyrophase
- → Biased scattering, favors wave growth

Traditional, Quasilinear theory

- → Assumes uniform φ
- → Diffusive scattering, no backward wave

Graphical classification of CR instabilities

CR-driven instabilities in the linear regime (low density, gyrotropic CRs with a cold momentum distribution):

- → the fastest wave modes depend on the CR flux and pitch angle
- → because CRs will typically have a finite pitch angle, the typical dominant unstable wave modes occupy the top region

Shalaby+ 2021

Non-resonant hybrid (Bell's) instability

Hybrid-PIC simulation of CR ion acceleration at a collisionless, non-relativistic strong shock (Caprioli & Spitkowski 2014).

- top panel: downstream ion energy spectrum of a quasi-parallel shock, color coded by different times – thermal Maxwellian & CR power law that shows an increasing maximum energy with time
- bottom panels: magnitude of the total magnetic field for strong shocks with different obliquity, implying that magnetic field amplification and CR acceleration only works in quasi-parallel shocks

Non-resonant hybrid (Bell's) instability

Visualization of the underlying principle of Bell's streaming instability:

- The CR current, $\mathbf{j_d}$, induces a return current in the background electrons, $-\mathbf{j_d}$, which amplifies a helical magnetic perturbation and stretches it via the Lorentz force $\mathbf{F} = -(\mathbf{j_d} \times \mathbf{B})c^{-1}$ (Zirakashvili+ 2008)
- Saturation once CRs get magnetized:

$$\varepsilon_{B,\mathrm{sat}} \sim \frac{1}{2} \frac{v_{\mathrm{s}}}{c} \, \varepsilon_{\mathrm{cr}}$$

Main questions

- → Physics of instability saturation
 - ◆ Saturation as growth = damping or through particle trapping in Lorentz force potential?
 - Growth: which instability dominates? Forward/backward Alfvén, Whistler modes? Is MHD sufficient or do we need full dispersion relation?
 - ◆ Damping: Ion-neutral, nonlinear Landau damping, turbulent damping?
- \rightarrow Effect of inhomogeneities in ρ, \mathbf{B}, \dots
- → Multi-D effects: turbulence, cascades, oblique waves