Shocks and cosmic ray acceleration in MHD simulations

Christoph Pfrommer¹

in collaboration with

PhD students: K. Ehlert,¹ L. Jlassi,¹ R. Lemmerz,¹ J. Whittingham,¹ M. Weber¹
T. Berlok,¹ V. Bresci,¹ P. Girichidis,² M. Pais,³ K. Schaal, R. Pakmor,⁴
L. Perrone,¹ M. Shalaby,¹ C. Simpson,⁵ M. Sparre,^{6,1} V. Springel,⁴
T. Thomas,¹ M. Werhahn¹, G. Winner

¹AIP Potsdam, ²U of Heidelberg, ³Hebrew U, ⁴MPA Garching, ⁵U of Chicago, ⁶U of Potsdam

90

Potsdam Plasma Workshop, AIP, Nov 2022

Supernova remnant simulations

Astrophysical shocks

Introduction Injection algorithm Supernova remnant simulations

solar system shocks $\sim R_{\odot}$ coronal mass ejection (SOHO)

interstellar shocks $\sim 20~pc$ supernova 1006 (CXC/Hughes)

cluster shocks $\sim 2~\text{Mpc}$ giant radio relic (van Weeren)

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< ∃⇒

Supernova remnant simulations

Astrophysical shocks

Astrophysical collisionless shocks can:

- accelerate particles (electrons and ions) \rightarrow cosmic rays (CRs)
- amplify magnetic fields (or generate them from scratch)

solar system shocks $\sim R_{\odot}$ coronal mass ejection (SOHO)

interstellar shocks $\sim 20~pc$ supernova 1006 (CXC/Hughes)

cluster shocks $\sim 2~\text{Mpc}$ giant radio relic (van Weeren)

Introduction Injection algorithm Supernova remnant simulations

Supernova remnant simulations

Astrophysical shocks

Astrophysical collisionless shocks can:

- accelerate particles (electrons and ions) \rightarrow cosmic rays (CRs)
- amplify magnetic fields (or generate them from scratch)
- \Rightarrow non-thermal emission (radio to gamma rays)
- \Rightarrow cosmic ray feedback in galaxies and galaxy clusters

solar system shocks $\sim R_{\odot}$ coronal mass ejection (SOHO)

interstellar shocks \sim 20 pc supernova 1006 (CXC/Hughes)

cluster shocks \sim 2 Mpc giant radio relic (van Weeren)

Introduction Injection algorithm Supernova remnant simulations

Supernova remnant simulations

Introduction Injection algorithm Supernova remnant simulations

Unstructured moving-mesh code AREPO (Springel 2010)

Supernova remnant simulations

Introduction Injection algorithm Supernova remnant simulations

Shock finder

∃⇒

Supernova remnant simulations

Introduction Injection algorithm Supernova remnant simulations

Shock finder

Voronoi cells belong to shock zone if

- $\nabla \cdot \mathbf{v} < 0$ (converging flow)
- $\nabla T \cdot \nabla \rho > 0$ (filtering out tangential discontinuities)
- $\mathcal{M}_1 > \mathcal{M}_{min}$ (safeguard against numerical noise)

Supernova remnant simulations

Introduction Injection algorithm Supernova remnant simulations

Shock finder and CR acceleration

CR acceleration:

• shock surface: cell with most converging flow

Supernova remnant simulations

Introduction Injection algorithm Supernova remnant simulations

Shock finder and CR acceleration

CR acceleration:

- shock surface: cell with most converging flow
- collect pre- and post-shock energy at shock surface $\Rightarrow E_{diss}$
- inject $\Delta E_{cr} = \zeta(\mathcal{M}_1, \theta) E_{diss}$ to shock and 1st post-shock cell

Supernova remnant simulations

Introduction Injection algorithm Supernova remnant simulations

Shock finder and CR acceleration

CR acceleration:

- shock surface: cell with most converging flow
- collect pre- and post-shock energy at shock surface $\Rightarrow E_{diss}$
- inject $\Delta E_{cr} = \zeta(\mathcal{M}_1, \theta) E_{diss}$ to shock and 1st post-shock cell

Supernova remnant simulations

Introduction Injection algorithm Supernova remnant simulations

Shock finder and CR acceleration

Comparing simulations to exact solutions that include CR acceleration

Supernova remnant simulations

Introduction Injection algorithm Supernova remnant simulations

Shock finder and CR acceleration

Comparing simulations to exact solutions that include CR acceleration

Christoph Pfrommer Shocks and cosmic ray acceleration

Supernova remnant simulations

Introduction Injection algorithm Supernova remnant simulations

Shock finder and CR acceleration

Comparing simulations to exact solutions that include CR acceleration

Christoph Pfrommer Shocks and cosmic ray acceleration

Supernova remnant simulations

Introduction Injection algorithm Supernova remnant simulations

Shock finder and CR acceleration

CP, Pakmor, Schaal, Simpson, Springel (2017)

Supernova remnant simulations

Introduction Injection algorithm Supernova remnant simulations

Shock finder and CR acceleration

CP, Pakmor, Schaal, Simpson, Springel (2017)

CR acceleration:

● shock surface: cell with most converging flow along ∇7

Supernova remnant simulations

Introduction Injection algorithm Supernova remnant simulations

Shock finder and CR acceleration

CP, Pakmor, Schaal, Simpson, Springel (2017)

CR acceleration:

- shock surface: cell with most converging flow along ∇7
- collect pre- and post-shock energy at shock surface
- inject CR energy to shock and post-shock cell

Supernova remnant simulations

Introduction Injection algorithm Supernova remnant simulations

Shock finder and CR acceleration

CR acceleration:

- shock surface: cell with most converging flow along ∇7
- collect pre- and post-shock energy at shock surface
- inject CR energy to shock and post-shock cell

Supernova remnant simulations

Sedov explosion

density

Supernova remnant simulations

AIP

э

æ

CP, Pakmor, Schaal, Simpson, Springel (2017)

Christoph Pfrommer Shocks and cosmic ray acceleration

Supernova remnant simulations

Introduction Injection algorithm Supernova remnant simulations

Sedov explosion with CR acceleration

density

specific cosmic ray energy

10³

AIP

э

Supernova remnant simulations

Introduction Injection algorithm Supernova remnant simulations

Sedov explosion with CR acceleration

CP, Pakmor, Schaal, Simpson, Springel (2017)

AIP

MHD setup

Protons and hadronic emission Electrons and leptonic emission

Global MHD simulations of SNRs with CR physics

 detect and characterize shocks and jump conditions on the fly

AIP

Mach number finder with CRs

CP+ (2017)

MHD setup

Protons and hadronic emission Electrons and leptonic emission

Global MHD simulations of SNRs with CR physics

- detect and characterize shocks and jump conditions on the fly
- measure Mach number \mathcal{M} and magnetic obliquity θ_B

obliquity-dep. acceleration efficiency

Pais, CP+ (2018) based on hybrid PIC sim.'s by Caprioli & Spitkovsky (2015)

MHD setup

Protons and hadronic emission Electrons and leptonic emission

Global MHD simulations of SNRs with CR physics

simulated TeV gamma-ray map

Pais & CP (2020)

- detect and characterize shocks and jump conditions on the fly
- measure Mach number \mathcal{M} and magnetic obliquity θ_B
- inject and transport CR protons
 ⇒ dynamical back reaction on gas flow, hadronic emission

MHD setup

Protons and hadronic emission Electrons and leptonic emission

Global MHD simulations of SNRs with CR physics

simulated gamma-ray spectrum

Winner, CP+ (2019, 2020)

- detect and characterize shocks and jump conditions on the fly
- measure Mach number M and magnetic obliquity θ_B
- inject and transport CR protons
 ⇒ dynamical back reaction on gas flow, hadronic emission
- inject and transport CR electrons
- calculate non-thermal radio, X-ray, γ-ray emission

MHD setup Protons and hadronic emission Electrons and leptonic emission

Hadronic TeV γ rays: SN 1006

Christoph Pfrommer

Shocks and cosmic ray acceleration

AIP

э

Protons and hadronic emission

Hadronic TeV γ rays: SN 1006

Ŷ

Christoph Pfrommer

Shocks and cosmic ray acceleration

AIP

MHD setup Protons and hadronic emission Electrons and leptonic emission

Hadronic TeV γ rays: Vela Jr. and RXJ 1713

Christoph Pfrommer

Shocks and cosmic ray acceleration

MHD setup Protons and hadronic emission Electrons and leptonic emission

TeV γ rays from shell-type supernova remnants

Varying magnetic coherence scale in simulations of SN 1006 and Vela Junior

ヨトメヨト

MHD setup Protons and hadronic emission Electrons and leptonic emission

TeV γ rays from shell-type supernova remnants

Varying magnetic coherence scale in simulations of SN 1006 and Vela Junior

Pais, CP+ (2020)

 \Rightarrow Correlation structure of patchy TeV γ -rays constrains magnetic coherence scale in ISM:

SN 1006: $\lambda_B > 200^{+80}_{-10}$ pc

Vela Junior:
$$\lambda_B = 13^{+13}_{-4.3} \text{ pc}$$

Shocks and cosmic ray acceleration

MHD setup Protons and hadronic emission Electrons and leptonic emission

CREST - Cosmic Ray Electron Spectra evolved in Time

CREST code (Winner, CP+ 2019)

- post-processing MHD simulations
- on Lagrangian particles
 - adiabatic processes
 - Coulomb and radiative losses
 - Fermi-I (re-)acceleration
 - Fermi-II reacceleration
 - secondary electrons

Link to observations

- radio synchrotron
- inverse Compton (IC) γ-ray

MHD setup Protons and hadronic emission Electrons and leptonic emission

Sedov-Taylor blast wave: spectral evolution

Winner, CP+ (2019)

AIP

$$E_0 = 10^{51} \, \mathrm{erg}, \; n_{\mathrm{gas}} = 1 \, \mathrm{cm}^{-3}, \; T_0 = 10^4 \, \mathrm{K}, \; B = 1 \, \mathrm{\mu G}$$

MHD setup Protons and hadronic emission Electrons and leptonic emission

SN 1006: CR electron acceleration models

• different obliquity dependent electron acceleration efficiencies:

- 1. preferred quasi-perpendicular acceleration (previous PIC)
- 2. constant acceleration efficiency (a straw man's model)
- 3. preferred quasi-parallel acceleration (like CR protons)

MHD setup Protons and hadronic emission Electrons and leptonic emission

CR electron acceleration: quasi-perpendicular shocks

Shocks and cosmic ray acceleration

AIP

MHD setup Protons and hadronic emission Electrons and leptonic emission

CR electron acceleration: constant efficiency

Christoph Pfrommer

Shocks and cosmic ray acceleration

AIP

MHD setup Protons and hadronic emission Electrons and leptonic emission

CR electron acceleration: quasi-parallel shocks

Christoph Pfrommer

Shocks and cosmic ray acceleration

MHD setup Protons and hadronic emission Electrons and leptonic emission

SN 1006: multi-frequency spectrum

Winner, CP+ (2020)

quasi-parallel acceleration model fits multi-frequency spectrum

MHD setup Protons and hadronic emission Electrons and leptonic emission

SN 1006: multi-frequency spectrum

Winner, CP+ (2020)

- quasi-parallel acceleration model fits multi-frequency spectrum
- GeV regime: leptonic inverse Compton dominates
- TeV regime: hadronic pion decay

MHD setup Protons and hadronic emission Electrons and leptonic emission

SN 1006: maps of γ -ray components at E > 500 GeV

Winner, CP+ (2020)

- hadronic pion decay emission dominant at shock rim
- leptonic IC emission has contributions from SNR interior

MHD setup Protons and hadronic emission Electrons and leptonic emission

SN 1006: magnetic field amplification models

Magnetic amplification due to a turbulent dynamo and Bell's instability

Winner, CP+ (2020)

magnetic field strength in a slice through the simulated SNRs

MHD setup Protons and hadronic emission Electrons and leptonic emission

SN 1006: magnetic field amplification models

Magnetic amplification due to a turbulent dynamo and Bell's instability

Winner, CP+ (2020)

- magnetic field strength in a slice through the simulated SNRs
- left: effect of turbulent amplification only, maximum realized at quasi-perpendicular shock, adiabatic cooling inside the SNR
- middle: effect of Bell amplification only, f_{Bell} follows obliquity dependence of CR proton efficiency
- right: sum of both, turbulent and Bell amplification

MHD setup Protons and hadronic emission Electrons and leptonic emission

Constraining the volume-filling, turbulent **B** field

 multi-frequency spectra: synchrotron (radio + X-rays) and IC and hadronic γ-ray emission

MHD setup Protons and hadronic emission Electrons and leptonic emission

Constraining the volume-filling, turbulent **B** field

- multi-frequency spectra: synchrotron (radio + X-rays) and IC and hadronic γ-ray emission
- strong, volume-filling *B* field (≈ 35 µG) required to suppress IC γ-ray component and to match steep X-ray spectrum

MHD setup Protons and hadronic emission Electrons and leptonic emission

SN 1006: best-fit multi-frequency spectrum

Winner, CP+ (2020)

parameter optimization of magnetic amplification processes

MHD setup Protons and hadronic emission Electrons and leptonic emission

SN 1006: best-fit multi-frequency spectrum

Winner, CP+ (2020)

- parameter optimization of magnetic amplification processes
- strong (≈ 35 µG) volume-filling *B* field (turbulent dynamo): lower *B* field excluded by IC component
- Bell-amplification factor f_{Bell} 10 20 weakly constrained

Conclusions for CR hydrodynamics at SNRs

CR hydrodynamics with kinetic plasma physics:

- Shock finder enables CR acceleration in MHD simulations
- CR proton transport in MHD enables dynamic backreaction
- CR electron spectral transport (CREST): multi-frequency spectra and emission maps

Conclusions for CR hydrodynamics at SNRs

CR hydrodynamics with kinetic plasma physics:

- Shock finder enables CR acceleration in MHD simulations
- CR proton transport in MHD enables dynamic backreaction
- CR electron spectral transport (CREST): multi-frequency spectra and emission maps
- CR acceleration constraints by MHD models:
 - TeV shell-type SNRs probe magnetic coherence scale in ISM
 - hybrid-PIC simulations of p⁺ acceleration agree with global SNR simulations
 - global SNR simulations imply preferred quasi-parallel e⁻ acceleration: new intermediate instability enables e⁻ (pre-)acceleration

MHD setup Protons and hadronic emission Electrons and leptonic emission

PICOGAL: From Plasma KInetics to COsmological GALaxy Formation

Christoph Pfrommer

Shocks and cosmic ray acceleration

MHD setup Protons and hadronic emission Electrons and leptonic emission

Literature for the talk

Cosmic ray hydrodynamics and shock acceleration:

• Pfrommer, Pakmor, Schaal, Simpson, Springel, *Simulating cosmic ray physics on a moving mesh* 2017, MNRAS, 465, 4500.

Cosmic ray electron spectra in MHD:

- Winner, Pfrommer, Girichidis, Pakmor, Evolution of cosmic ray electron spectra in magnetohydrodynamical simulations, 2019, MNRAS, 488, 2235.
- Winner, Pfrommer, Girichidis, Werhahn, Pais, Evolution and observational signatures of the cosmic ray electron spectrum in SN 1006, 2020, MNRAS, 499, 2785.

Cosmic ray proton acceleration at SNRs:

- Pais, Pfrommer, Ehlert, Pakmor, The effect of cosmic-ray acceleration on supernova blast wave dynamics, 2018, MNRAS, 478, 5278.
- Pais, Pfrommer, Ehlert, Werhahn, Winner, Constraining the coherence scale of the interstellar magnetic field using TeV gamma-ray observations of supernova remnants, 2020, MNRAS, 496, 2448.
- Pais, Pfrommer, Simulating TeV gamma-ray morphologies of shell-type supernova remnants, 2020, MNRAS, 498, 5557.

