Cosmic rays in galaxies: plasma instabilities, transport, and observations

Christoph Pfrommer¹

in collaboration with

T. Thomas¹, M. Werhahn¹, M. Shalaby¹, P. Girichidis¹, E. Puchwein¹, G. Winner¹, T. Enßlin², R. Pakmor²

¹AIP Potsdam, ²MPA Garching

Understanding the Most Energetic Cosmic Accelerators: Advances in Theory and Simulation, Princeton, Oct 2020

< 🗆 🕨

d C

Introduction Intermediate instability Overview and applications

Cosmic ray transport and feedback in galaxies

supernova Cassiopeia A

X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA/JPL-Caltech/Steward/O.Krause et al. galactic supernova remnants drive shock waves, turbulence, accelerate electrons + protons, amplify magnetic fields

Introduction Intermediate instability Overview and applications

Cosmic ray transport and feedback in galaxies

super wind in M82

NASA/JPL-Caltech/STScI/CXC/UofA

- galactic supernova remnants drive shock waves, turbulence, accelerate electrons + protons, amplify magnetic fields
- supernovae, radiation and cosmic rays (CRs) drive gas out of galaxies via outflows

Christoph Pfrommer Cosmic rays in galaxies

Introduction Intermediate instability Overview and applications

Cosmic ray transport and feedback in galaxies

super wind in M82

NASA/JPL-Caltech/STScI/CXC/UofA

- galactic supernova remnants drive shock waves, turbulence, accelerate electrons + protons, amplify magnetic fields
- supernovae, radiation and cosmic rays (CRs) drive gas out of galaxies via outflows
- critical for explaining low star conversion efficiency in dwarfs
 → physics of galaxy formation

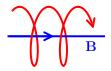
Introduction Intermediate instability Overview and applications

Cosmic ray transport and feedback in galaxies

super wind in M82

NASA/JPL-Caltech/STScI/CXC/UofA

- galactic supernova remnants drive shock waves, turbulence, accelerate electrons + protons, amplify magnetic fields
- supernovae, radiation and cosmic rays (CRs) drive gas out of galaxies via outflows
- critical for explaining low star conversion efficiency in dwarfs → physics of galaxy formation
- need to study cosmic-ray driven plasma instabilities
 → CR acceleration, transport and feedback



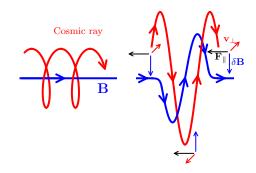
Plasma instabilities

Cosmic ray transport Cosmic rays in galaxies Intermediate instability Overview and applications

Interactions of CRs and magnetic fields

Cosmic ray

sketch: Jacob


・ロト ・ 同ト ・ ヨト ・ ヨト

Plasma instabilities

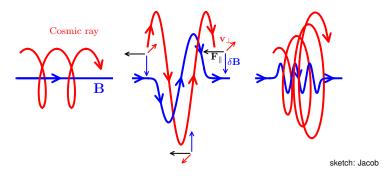
Cosmic ray transport Cosmic rays in galaxies Intermediate instability Overview and applications

Interactions of CRs and magnetic fields

sketch: Jacob

< 🗇 🕨

• gyro resonance: $\omega - k_{\parallel} v_{\parallel} = n \Omega$


Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency

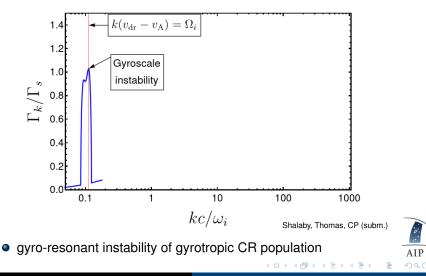
Plasma instabilities

Cosmic ray transport Cosmic rays in galaxies Intermediate instability Overview and applications

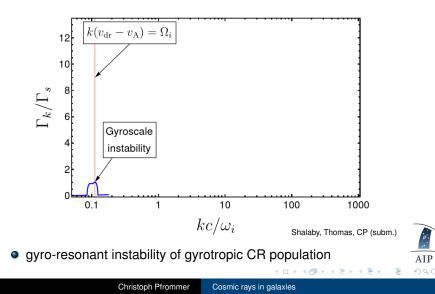
Interactions of CRs and magnetic fields

• gyro resonance: $\omega - k_{\parallel} v_{\parallel} = n \Omega$

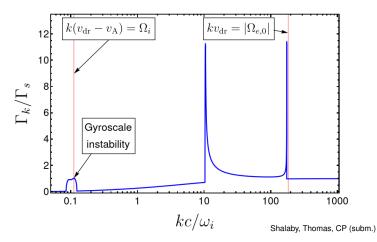
Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency


• CRs scatter on magnetic fields \rightarrow isotropization of CR momenta

・ロット (雪) (き) (し)


Introduction Intermediate instability Overview and applications

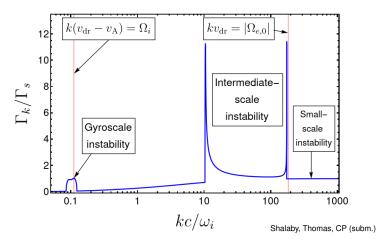
CR driven instabilities – growth rates


Plasma instabilities Cosmic ray transport Introduction Intermediate instability Overview and applications

CR driven instabilities – growth rates

Introduction Intermediate instability Overview and applications

CR driven instabilities – growth rates

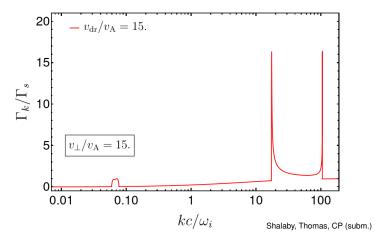

• new intermediate-scale instability of gyrotropic CR population

▶ < ∃ ▶

Introduction Intermediate instability Overview and applications

CR driven instabilities – growth rates

• **new intermediate-scale instability** of gyrotropic CR population

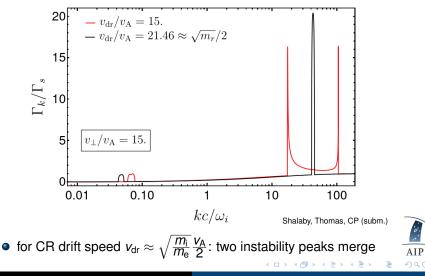

프 🖌 🗶 프 🛌

э

Plasma instabilities Cosmic ray transport

Intermediate instability Cosmic rays in galaxies

CR driven intermediate-scale instability

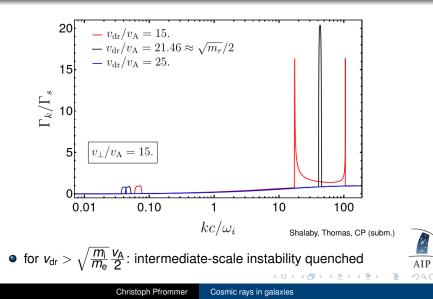


Iow CR drift speed: two instability peaks

AIP

Introduction Intermediate instability Overview and applications

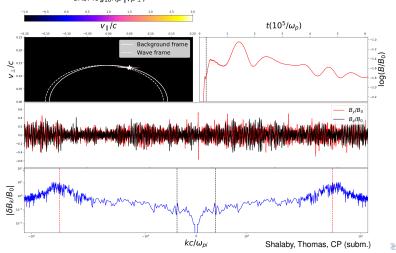
CR driven intermediate-scale instability



Christoph Pfrommer

Cosmic rays in galaxies

Introduction Intermediate instability Overview and applications


CR driven intermediate-scale instability

Introduction Intermediate instability Overview and applications

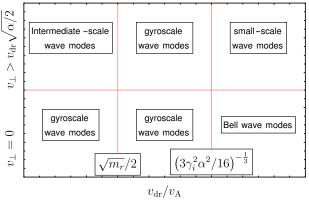
Cosmic ray driven instabilities

Growth of the intermediate-scale and the gyro-resonant instability

CRs: $log_{10}f(p_{\parallel}, p_{\perp})$

Christoph Pfrommer

Cosmic rays in galaxies


AIP

Plasma instabilities Cosmic ray transport

Cosmic rays in galaxies

Introduction Intermediate instability Overview and applications

Regimes of CR driven instabilities

Shalaby, Thomas, CP (subm.)

• where $\alpha = \frac{n_{cr}}{n_i}$ is the CR number fraction, $m_r = \frac{m_i}{m_e}$ is the mass ratio, and γ_i is the Lorentz factor of CR ions

Introduction Intermediate instability Overview and applications

The intermediate-scale instability

Properties of the intermediate-scale instability:

- growth rate $\Gamma_{inter} \gg \Gamma_{gyro}$ and excites broad spectral support
- unstable modes are background ion-cyclotron waves in the comoving CR frame
- condition for growth:

$$rac{v_{
m dr}}{v_{
m A}} < rac{1}{2}\sqrt{rac{m_{
m i}}{m_{
m e}}}$$

< 🗇 🕨

Introduction Intermediate instability Overview and applications

The intermediate-scale instability

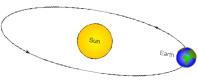
Properties of the intermediate-scale instability:

- growth rate $\Gamma_{inter} \gg \Gamma_{gyro}$ and excites broad spectral support
- unstable modes are background ion-cyclotron waves in the comoving CR frame
- condition for growth:

$$rac{v_{
m dr}}{v_{
m A}} < rac{1}{2} \sqrt{rac{m_{
m i}}{m_{
m e}}}$$

Implication of this new instability:

- couples CRs more tightly to background plasma and strengthens CR feedback in galaxies and galaxy clusters
- enables electron injection into diffusive shock acceleration
- decelerates CR escape from the sites of particle acceleration
 → brighter gamma-ray halos



・ロト ・ 戸 ・ ・ ヨ ・

Introduction Cosmic ray hydrodynamics Radio synchrotron harps

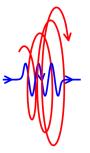
Cosmic ray transport: an extreme multi-scale problem

Milky Way-like galaxy:

$$r_{
m gal} \sim 10^4~
m pc$$

gyro-orbit of GeV cosmic ray:

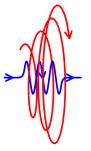
$$r_{
m cr}=rac{
ho_{\perp}}{e\,B_{\mu
m G}}\sim 10^{-6}~
m pc\simrac{1}{4}~
m AU$$


\Rightarrow need to develop a fluid theory for a collisionless, non-Maxwellian component!

Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2019)

Introduction Cosmic ray hydrodynamics Radio synchrotron harps

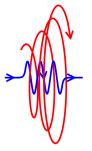
CR streaming and diffusion


- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_a
 - wave damping: transfer of CR energy and momentum to the thermal gas

Introduction Cosmic ray hydrodynamics Radio synchrotron harps

CR streaming and diffusion

- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_a
 - wave damping: transfer of CR energy and momentum to the thermal gas

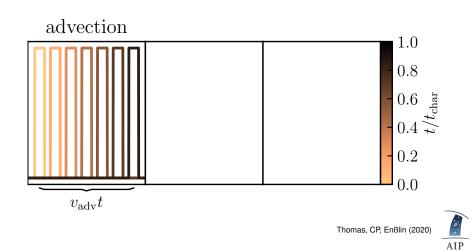

ightarrow CRs exert pressure on thermal gas via scattering on Alfvén waves

Introduction Cosmic ray hydrodynamics Radio synchrotron harps

CR streaming and diffusion

- CR streaming instability: Kulsrud & Pearce 1969
 - if v_{cr} > v_a, CR flux excites and amplifies an Alfvén wave field in resonance with the gyroradii of CRs
 - scattering off of this wave field limits the (GeV) CRs' bulk speed ~ v_a
 - wave damping: transfer of CR energy and momentum to the thermal gas

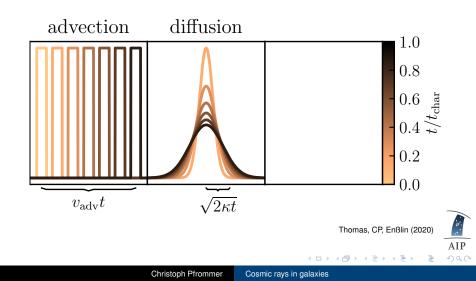
A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A


 \rightarrow CRs exert pressure on thermal gas via scattering on Alfvén waves

weak wave damping: strong coupling \rightarrow CR stream with waves strong wave damping: less waves to scatter \rightarrow CR diffusion prevails

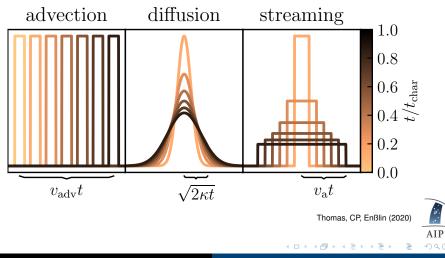
Plasma instabilities Cosmic ray transport Introduction Cosmic ray hydrodynamics Radio synchrotron harps

Modes of CR propagation



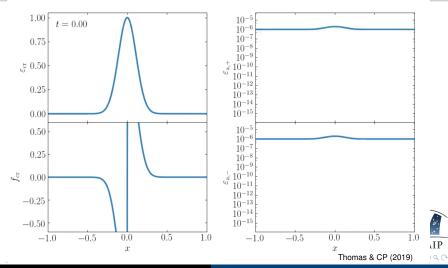
・ロット (雪) (山) (山)

ъ


Introduction Cosmic ray hydrodynamics Radio synchrotron harps

Modes of CR propagation

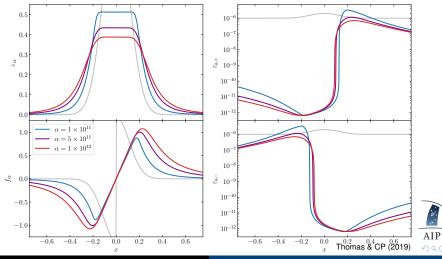
Introduction Cosmic ray hydrodynamics Radio synchrotron harps


Modes of CR propagation

Introduction Cosmic ray hydrodynamics Radio synchrotron harps

Non-equilibrium CR streaming and diffusion

Coupling the evolution of CR and Alfvén wave energy densities


Christoph Pfrommer

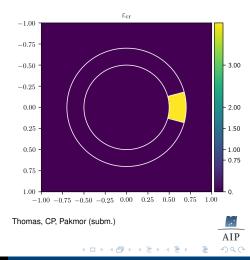
Cosmic rays in galaxies

Introduction Cosmic ray hydrodynamics Radio synchrotron harps

Non-equilibrium CR streaming and diffusion

Varying damping rate of Alfvén waves modulates the diffusivity of solution

Christoph Pfrommer


Cosmic rays in galaxies

Introduction Cosmic ray hydrodynamics Radio synchrotron harps

Anisotropic CR streaming and diffusion – AREPO

CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics

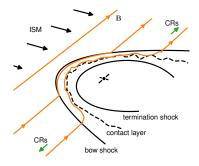
- CR streaming and diffusion along magnetic field lines in the self-confinement picture
- moment expansion similar to radiation hydrodynamics
- accounts for kinetic physics: non-linear Landau damping, gyro-resonant instability, ...
- Galilean invariant and causal transport
- energy and momentum conserving

MeerKAT image of the Galactic Center

Haywood+ (Nature, 2019)

< □

MeerKAT image of the Galactic Center


Haywood+ (Nature, 2019)

Plasma instabilities Introduction Cosmic ray transport Cosmic ray hydrodynami Cosmic rays in galaxies Radio synchrotron harps

Radio synchrotron harps: the model

shock acceleration scenario

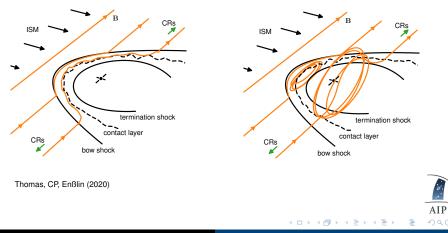
Thomas, CP, Enßlin (2020)

Christoph Pfrommer Cosmic rays in galaxies

< 🗇 >

▶ < ∃ >

AIP


Plasma instabilities Introduc Cosmic ray transport Cosmic psmic rays in galaxies Radio s

Introduction Cosmic ray hydrodynamics Radio synchrotron harps

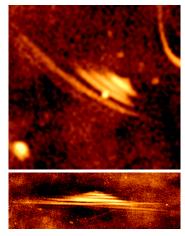
Radio synchrotron harps: the model

shock acceleration scenario

magnetic reconnection at pulsar wind

Introduction Cosmic ray hydrodynamics Radio synchrotron harps

Radio synchrotron harps: the model

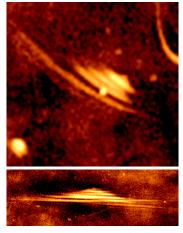

shock acceleration scenario

CR diffusion vs. streaming + diffusion

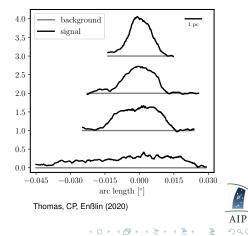
Introduction Cosmic ray hydrodynamics Radio synchrotron harps

Radio synchrotron harps: testing CR propagation

Haywood+ (Nature, 2019)

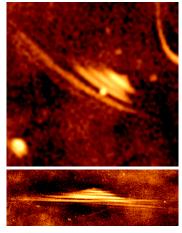


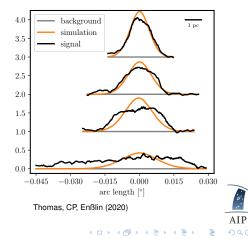
Christoph Pfrommer Cosmic rays in galaxies


< 17 ▶

Introduction Cosmic ray hydrodynamics Radio synchrotron harps

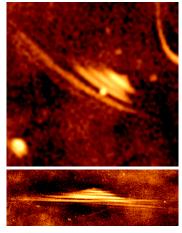
Radio synchrotron harps: testing CR propagation


Haywood+ (Nature, 2019)

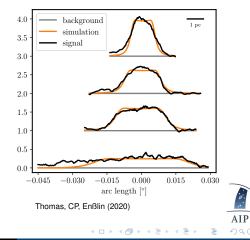

lateral radio profiles

Introduction Cosmic ray hydrodynamics Radio synchrotron harps

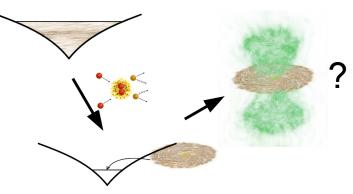
Radio synchrotron harps: testing CR propagation


Haywood+ (Nature, 2019)

CR diffusion


Introduction Cosmic ray hydrodynamics Radio synchrotron harps

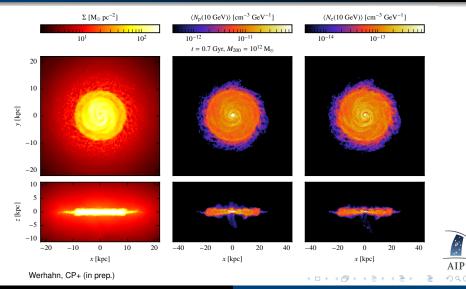
Radio synchrotron harps: testing CR propagation


Haywood+ (Nature, 2019)

CR streaming and diffusion

Cosmic ray maps and spectra Gamma-ray emission Conclusions

Cosmic rays in galaxy formation



Werhahn, CP, Girichidis+ (in prep.) *Cosmic rays and non-thermal emission in simulated galaxies: I. & II.* MHD + CR advection + anisotropic diffusion: $\{10^{10}, 10^{11}, 10^{12}\} M_{\odot}$ steady-state spectra of CR protons, primary & secondary electrons

Cosmic ray maps and spectra Gamma-ray emission Conclusions

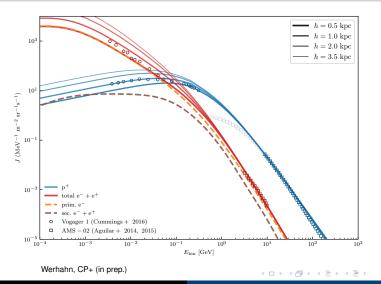
From a starburst galaxy to a Milky Way analogy

Christoph Pfrommer

Cosmic rays in galaxies

Plasma instabilities Cosmic ray maps and spectra Cosmic ray transport Cosmic rays in galaxies From a starburst galaxy to a Milky Way analogy $\Sigma [M_{\odot} pc^{-2}]$ $\langle N_{\rm p}(10 \text{ GeV})\rangle$ [cm⁻³ GeV⁻¹] $(N_{\rm c}(10 {\rm ~GeV})) [{\rm cm}^{-3} {\rm ~GeV}^{-1}]$ 10^{-13} 10^{1} 102 10^{-12} 10^{-11} 10^{-14} t = 2.3 Gyr, $M_{200} = 10^{12}$ M_{\odot} 20 10 y [kpc] 0 -10-2010 5 z [kpc] 0 -5 -10-20-100 10 20 -40-200 20 40 -40-200 20 40 x [kpc] x [kpc] x [kpc]

Werhahn, CP+ (in prep.)

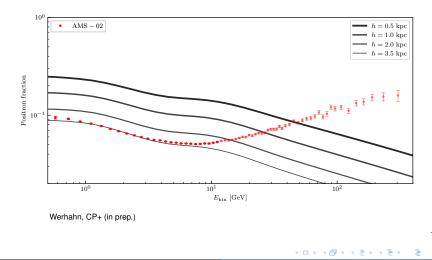

Christoph Pfrommer

Cosmic rays in galaxies

AIP

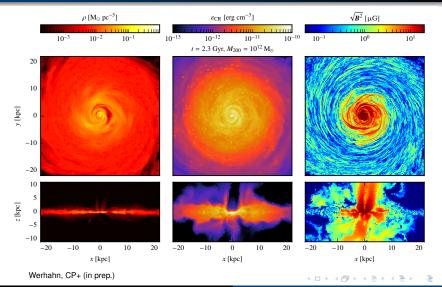
Cosmic ray maps and spectra Gamma-ray emission Conclusions

Comparing CR spectra to Voyager and AMS-02 data


Christoph Pfrommer

Cosmic rays in galaxies

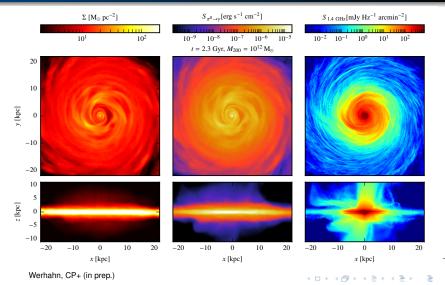
Cosmic ray maps and spectra Gamma-ray emission Conclusions


AIP

Comparing the positron fraction to AMS-02 data

Cosmic ray maps and spectra Gamma-ray emission Conclusions

Simulation of a starburst galaxy


Christoph Pfrommer

Cosmic rays in galaxies

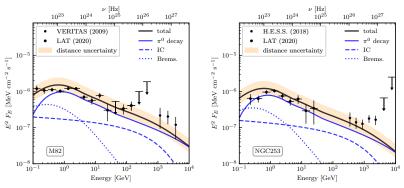
AIP

Cosmic ray maps and spectra Gamma-ray emission Conclusions

Simulation of a starburst galaxy

Christoph Pfrommer

Cosmic rays in galaxies


AIP

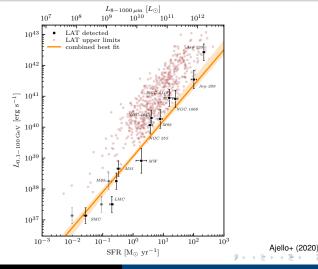
Cosmic ray maps and spectra Gamma-ray emission

Gamma-ray spectra of starburst galaxies

Messier 82

NGC 253

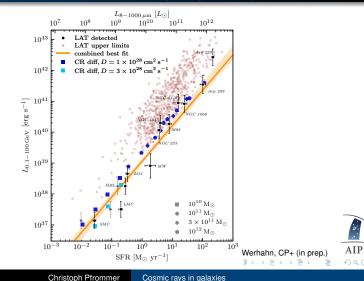
Werhahn, CP+ (in prep.)


- gamma-ray spectra in starbursts dominated by pion decay
- CR protons propagate in Kolmogorov turbulence: $\kappa \propto E^{0.3}$

Cosmic ray maps and spectra Gamma-ray emission

Far infra-red – gamma-ray correlation

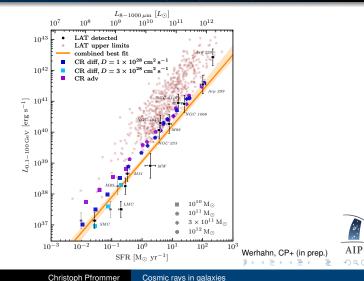
Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays


AIP

Christoph Pfrommer Cosmic rays in galaxies

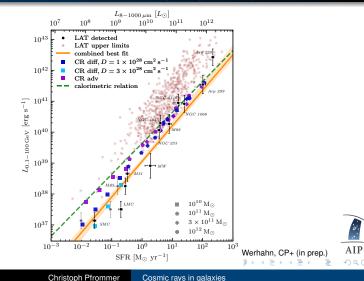
Cosmic ray maps and spectra Gamma-ray emission

Far infra-red – gamma-ray correlation


Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

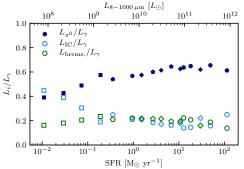
Cosmic ray maps and spectra Gamma-ray emission

Far infra-red – gamma-ray correlation


Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

Cosmic ray maps and spectra Gamma-ray emission

Far infra-red – gamma-ray correlation


Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

Cosmic ray maps and spectra Gamma-ray emission

Far infra-red – gamma-ray correlation

Contributions of hadronic and leptonic emission to the gamma-ray luminosity

Werhahn, CP+ (in prep.)

- gamma-ray emission in starbursts dominated by pion decay
- leptonic component (primarily inverse Compton) dominates at low star formation rates

Cosmic ray maps and spectra Gamma-ray emission Conclusions

Conclusions

CR-driven plasma instabilities:

- discovery of new intermediate-scale instability, which grows faster than the gyro-resonant instability
- implications for CR transport and feedback in galaxies, electron injection into diffusive shock acceleration, and CR escape from acceleration sites

< 🗇 ▶

Cosmic ray maps and spectra Gamma-ray emission Conclusions

Conclusions

CR-driven plasma instabilities:

- discovery of new intermediate-scale instability, which grows faster than the gyro-resonant instability
- implications for CR transport and feedback in galaxies, electron injection into diffusive shock acceleration, and CR escape from acceleration sites

CR transport in galaxies:

- novel theory of CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics
- synchrotron harps: CR streaming dominates over diffusion

< 🗇 🕨

Cosmic ray maps and spectra Gamma-ray emission Conclusions

Conclusions

CR-driven plasma instabilities:

- discovery of new intermediate-scale instability, which grows faster than the gyro-resonant instability
- implications for CR transport and feedback in galaxies, electron injection into diffusive shock acceleration, and CR escape from acceleration sites

CR transport in galaxies:

- novel theory of CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics
- synchrotron harps: CR streaming dominates over diffusion

CR-induced signatures in galaxies

- Voyager's high electron-to-proton ratio at low energies explained by Coulomb losses of steady-state spectra
- AIP
- leptonic gamma-ray contribution important at low star formation rates

Cosmic ray maps and spectra Gamma-ray emission Conclusions

CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtioN

AIP

Christoph Pfrommer

Cosmic rays in galaxies

Cosmic ray maps and spectra Gamma-ray emission Conclusions

Literature for the talk

Cosmic ray instabilities and transport:

- Shalaby, Thomas, Pfrommer, *A new cosmic ray-driven instability*, 2020, submitted, arXiv:2010.11197.
- Thomas & Pfrommer, Cosmic-ray hydrodynamics: Alfvén-wave regulated transport of cosmic rays, 2019, MNRAS, 485, 2977.
- Thomas, Pfrommer, Enßlin, *Probing cosmic ray transport with radio synchrotron harps in the Galactic center*, 2020, ApJL, 890, L18.

Cosmic rays in galaxies:

- Werhahn, Pfrommer, Girichidis, Puchwein, Pakmor, Cosmic rays and non-thermal emission in simulated galaxies. I. Electron and proton spectra explain Voyager-1 data, in prep.
- Werhahn, Pfrommer, Girichidis, Winner, Cosmic rays and non-thermal emission in simulated galaxies. II. γ-ray maps, spectra and the far infrared-γ-ray relation, in prep.

イロト イ理ト イヨト イヨト

Cosmic ray maps and spectra Gamma-ray emission Conclusions

Additional slides

э

イロン イロン イヨン イヨン

Christoph Pfrommer Cosmic rays in galaxies

Cosmic ray maps and spectra Gamma-ray emission Conclusions

Analogies of CR and radiation hydrodynamics

CRs and radiation are relativistic fluids

regime	CR transport	radiation HD analogy
• tangled B ,	CR diffusion	diffusive transport
strong scattering		in clumsy medium
 resolved <i>B</i>, strong scattering 	CR streaming with v a	Thomson scattering ($ au \gg$ 1) $ ightarrow$ advection with $m{ u}$
 weak scattering 	CR streaming	flux-limited diffusion/
Ū	and diffusion	M1 closure ($ au\gtrsim$ 1)
 no scattering 	CR propagation	vacuum propagation
	with <i>c</i>	

Jiang & Oh (2018), Thomas & CP (2019)

< 17 ▶

Cosmic ray maps and spectra Gamma-ray emission Conclusions

Analogies of CR and radiation hydrodynamics

CRs and radiation are relativistic fluids

regime	CR transport	radiation HD analogy
• tangled B , strong scattering	CR diffusion	diffusive transport in clumsy medium
 resolved <i>B</i>, strong scattering 	CR streaming with v a	Thomson scattering ($ au \gg$ 1) $ ightarrow$ advection with $m{ u}$
 weak scattering 	CR streaming and diffusion	flux-limited diffusion/ M1 closure ($ au\gtrsim$ 1)
 no scattering 	CR propagation with <i>c</i>	vacuum propagation

Jiang & Oh (2018), Thomas & CP (2019)

but: CR hydrodynamics is charged RHD

ightarrow take gyrotropic average and account for anisotropic transport

Plasma instabilities Cosmic ray maps and sp Cosmic ray transport Gamma-ray emission Cosmic rays in galaxies Conclusions

CR vs. radiation hydrodynamics

 capitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018) derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)

< 17 ▶

 Plasma instabilities
 Cosmic ray maps and spec

 Cosmic ray transport
 Gamma-ray emission

 Cosmic rays in galaxies
 Conclusions

CR vs. radiation hydrodynamics

- capitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018) derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)
- lab-frame equ's for CR energy and momentum density, ε_{cr} and f_{cr}/c^2

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f}_{\rm cr} = -\boldsymbol{w}_{\pm} \cdot \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})] - \boldsymbol{v} \cdot \boldsymbol{g}_{\rm Lorentz} + S_{\varepsilon}$$

$$\frac{1}{c^2}\frac{\partial f_{cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{\mathsf{P}}_{cr} = - \qquad \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{cr} - \boldsymbol{w}_{\pm}(\varepsilon_{cr} + \boldsymbol{P}_{cr})] - \boldsymbol{g}_{\mathsf{Lorentz}} + \boldsymbol{S}_{f}$$

Alfvén wave velocity in lab frame: $\boldsymbol{w}_{\pm} = \boldsymbol{v} \pm \boldsymbol{v}_{a}$, CR scattering frequency $\bar{\nu}_{\pm} = c^{2}/(3\kappa_{\pm})$

< 🗇 ▶

 Plasma instabilities
 Cosmic ray maps and spec

 Cosmic ray transport
 Gamma-ray emission

 Cosmic rays in galaxies
 Conclusions

CR vs. radiation hydrodynamics

- capitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018) derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)
- lab-frame equ's for CR energy and momentum density, ε_{cr} and f_{cr}/c^2

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f}_{\rm cr} = -\boldsymbol{w}_{\pm} \cdot \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})] - \boldsymbol{v} \cdot \boldsymbol{g}_{\rm Lorentz} + \boldsymbol{S}_{\varepsilon}$$

$$\frac{1}{c^2}\frac{\partial f_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{\mathsf{P}}_{\rm cr} = - \qquad \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot \left[\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})\right] - \boldsymbol{g}_{\rm Lorentz} + \boldsymbol{S}_{f}$$

Alfvén wave velocity in lab frame: $\mathbf{w}_{\pm} = \mathbf{v} \pm \mathbf{v}_{a}$, CR scattering frequency $\bar{\nu}_{\pm} = c^{2}/(3\kappa_{\pm})$

• lab-frame equ's for radiation energy and momentum density, ε and f/c^2 (Mihalas & Mihalas, 1984, Lowrie+ 1999):

$$\frac{\partial \varepsilon}{\partial t} + \nabla \cdot \boldsymbol{f} = -\sigma_{s} \boldsymbol{v} \cdot [\boldsymbol{f} - \boldsymbol{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a}$$
$$\frac{1}{c^{2}} \frac{\partial \boldsymbol{f}}{\partial t} + \nabla \cdot \mathbf{P} = -\sigma_{s} \quad [\boldsymbol{f} - \boldsymbol{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a} \boldsymbol{v}$$

< 🗇 🕨 🔸

 Plasma instabilities
 Cosmic ray maps and spect

 Cosmic ray transport
 Gamma-ray emission

 Cosmic rays in galaxies
 Conclusions

CR vs. radiation hydrodynamics

- capitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018) derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)
- lab-frame equ's for CR energy and momentum density, ε_{cr} and f_{cr}/c^2

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f}_{\rm cr} = -\boldsymbol{w}_{\pm} \cdot \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})] - \boldsymbol{v} \cdot \boldsymbol{g}_{\rm Lorentz} + S_{\varepsilon}$$

$$\frac{1}{c^2}\frac{\partial f_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{\mathsf{P}}_{\rm cr} = - \qquad \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot \left[\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})\right] - \boldsymbol{g}_{\rm Lorentz} + \boldsymbol{S}_{\rm f}$$

Alfvén wave velocity in lab frame: $\mathbf{w}_{\pm} = \mathbf{v} \pm \mathbf{v}_{a}$, CR scattering frequency $\bar{\nu}_{\pm} = c^{2}/(3\kappa_{\pm})$

• lab-frame equ's for radiation energy and momentum density, ε and f/c^2 (Mihalas & Mihalas, 1984, Lowrie+ 1999):

$$\frac{\partial \varepsilon}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f} = -\sigma_{s} \boldsymbol{v} \cdot [\boldsymbol{f} - \boldsymbol{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a}$$
$$\frac{1}{c^{2}} \frac{\partial \boldsymbol{f}}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{P} = -\sigma_{s} \quad [\boldsymbol{f} - \boldsymbol{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a} \boldsymbol{v}$$

• problem: CR lab-frame equation requires resolving rapid gyrokinetics!

 Plasma instabilities
 Cosmic ray maps and spect

 Cosmic ray transport
 Gamma-ray emission

 Cosmic rays in galaxies
 Conclusions

CR vs. radiation hydrodynamics

- capitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018) derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)
- lab-frame equ's for CR energy and momentum density, ε_{cr} and f_{cr}/c^2

$$\frac{\partial \varepsilon_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f}_{\rm cr} = -\boldsymbol{w}_{\pm} \cdot \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot [\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})] - \boldsymbol{v} \cdot \boldsymbol{g}_{\rm Lorentz} + S_{\varepsilon}$$

$$\frac{1}{c^2}\frac{\partial f_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{\mathsf{P}}_{\rm cr} = - \qquad \frac{\boldsymbol{b}\boldsymbol{b}}{3\kappa_{\pm}} \cdot \left[\boldsymbol{f}_{\rm cr} - \boldsymbol{w}_{\pm}(\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr})\right] - \boldsymbol{g}_{\rm Lorentz} + \boldsymbol{S}_{\rm f}$$

Alfvén wave velocity in lab frame: $\mathbf{w}_{\pm} = \mathbf{v} \pm \mathbf{v}_{a}$, CR scattering frequency $\bar{\nu}_{\pm} = c^{2}/(3\kappa_{\pm})$

• lab-frame equ's for radiation energy and momentum density, ε and f/c^2 (Mihalas & Mihalas, 1984, Lowrie+ 1999):

$$\frac{\partial \varepsilon}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{f} = -\sigma_{s} \boldsymbol{v} \cdot [\boldsymbol{f} - \boldsymbol{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a}$$
$$\frac{1}{c^{2}} \frac{\partial \boldsymbol{f}}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{P} = -\sigma_{s} \quad [\boldsymbol{f} - \boldsymbol{v} \cdot (\varepsilon \mathbf{1} + \mathbf{P})] + S_{a} \boldsymbol{v}$$

• solution: transform in comoving frame and project out gyrokinetics!

Plasma instabilities Cosmic ray n Cosmic ray transport Gamma-ray o Cosmic rays in galaxies Conclusions

Cosmic ray maps and spectr Gamma-ray emission Conclusions

Alfvén-wave regulated CR transport

comoving equ's for CR energy and momentum density (along B), ε_{cr} and f_{cr}/c², and Alfvén-wave energy densities ε_{a,±} (Thomas & CP 2019)

$$\begin{aligned} \frac{\partial \varepsilon_{\rm cr}}{\partial t} + \boldsymbol{\nabla} \cdot \left[\boldsymbol{\nu} (\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr}) + \boldsymbol{b} f_{\rm cr} \right] &= \boldsymbol{\nu} \cdot \boldsymbol{\nabla} \boldsymbol{P}_{\rm cr} \\ - \frac{\boldsymbol{v}_{\rm a}}{3\kappa_{+}} \left[f_{\rm cr} - \boldsymbol{v}_{\rm a} (\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr}) \right] + \frac{\boldsymbol{v}_{\rm a}}{3\kappa_{-}} \left[f_{\rm cr} + \boldsymbol{v}_{\rm a} (\varepsilon_{\rm cr} + \boldsymbol{P}_{\rm cr}) \right], \end{aligned}$$

$$\frac{\partial f_{\rm cr}/c^2}{\partial t} + \nabla \cdot \left(\boldsymbol{v} f_{\rm cr}/c^2 \right) + \boldsymbol{b} \cdot \nabla P_{\rm cr} = -(\boldsymbol{b} \cdot \nabla \boldsymbol{v}) \cdot (\boldsymbol{b} f_{\rm cr}/c^2) \\ - \frac{1}{3\kappa_+} \left[f_{\rm cr} - v_{\rm a}(\varepsilon_{\rm cr} + P_{\rm cr}) \right] - \frac{1}{3\kappa_-} \left[f_{\rm cr} + v_{\rm a}(\varepsilon_{\rm cr} + P_{\rm cr}) \right],$$

$$\begin{split} \frac{\partial \varepsilon_{\mathrm{a},\pm}}{\partial t} + \boldsymbol{\nabla} \cdot \left[\boldsymbol{v}(\varepsilon_{\mathrm{a},\pm} + P_{\mathrm{a},\pm}) \pm v_{\mathrm{a}} \boldsymbol{b} \varepsilon_{\mathrm{a},\pm} \right] &= \boldsymbol{v} \cdot \boldsymbol{\nabla} P_{\mathrm{a},\pm} \\ \pm \frac{v_{\mathrm{a}}}{3\kappa_{\pm}} \left[f_{\mathrm{cr}} \mp v_{\mathrm{a}}(\varepsilon_{\mathrm{cr}} + P_{\mathrm{cr}}) \right] - \mathcal{S}_{\mathrm{a},\pm}. \end{split}$$

< 🗇 ▶