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galactic supernova remnants
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conversion efficiency in dwarfs
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driven plasma instabilities
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Doppler-shifted MHD frequency is a multiple of the CR gyrofrequency

CRs scatter on magnetic fields→ isotropization of CR momenta
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for CR drift speed vdr ≈
√

mi
me

vA
2 : two instability peaks merge
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for vdr >
√

mi
me

vA
2 : intermediate-scale instability quenched
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Cosmic ray driven instabilities
Growth of the intermediate-scale and the gyro-resonant instability
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Regimes of CR driven instabilities

Intermediate -scale

wave modes

gyroscale

wave modes

gyroscale

wave modes

gyroscale

wave modes

gyroscale

wave modes
Bell wave modes

small-scale

wave modes

Shalaby, Thomas, CP (subm.)

where α = ncr
ni

is the CR number fraction, mr = mi
me

is the mass
ratio, and γi is the Lorentz factor of CR ions

Christoph Pfrommer Cosmic rays in galaxies



Plasma instabilities
Cosmic ray transport

Cosmic rays in galaxies

Introduction
Intermediate instability
Overview and applications

The intermediate-scale instability

Properties of the intermediate-scale instability:

growth rate Γinter � Γgyro and excites broad spectral support

unstable modes are background ion-cyclotron waves in the
comoving CR frame

condition for growth: vdr

vA
<

1
2

√
mi

me

Implication of this new instability:

couples CRs more tightly to background plasma and
strengthens CR feedback in galaxies and galaxy clusters

enables electron injection into diffusive shock acceleration

decelerates CR escape from the sites of particle acceleration
→ brighter gamma-ray halos
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Cosmic ray transport: an extreme multi-scale problem

Milky Way-like galaxy:

rgal ∼ 104 pc

gyro-orbit of GeV cosmic ray:

rcr =
p⊥

e BµG
∼ 10−6 pc ∼ 1

4
AU

⇒ need to develop a fluid theory for a collisionless,
non-Maxwellian component!
Zweibel (2017), Jiang & Oh (2018), Thomas & CP (2019)
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CR streaming and diffusion

CR streaming instability: Kulsrud & Pearce 1969

if vcr > va, CR flux excites and
amplifies an Alfvén wave field in
resonance with the gyroradii of CRs

scattering off of this wave field limits
the (GeV) CRs’ bulk speed ∼ va

wave damping: transfer of CR energy
and momentum to the thermal gas

→ CRs exert pressure on thermal gas via scattering on Alfvén waves

weak wave damping: strong coupling→ CR stream with waves
strong wave damping: less waves to scatter→ CR diffusion prevails
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Non-equilibrium CR streaming and diffusion
Coupling the evolution of CR and Alfvén wave energy densities

Thomas & CP (2019)
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Non-equilibrium CR streaming and diffusion
Varying damping rate of Alfvén waves modulates the diffusivity of solution
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Anisotropic CR streaming and diffusion – AREPO
CR transport mediated by Alfvén waves and coupled to magneto-hydrodynamics

CR streaming and diffusion
along magnetic field lines in
the self-confinement picture

moment expansion similar to
radiation hydrodynamics

accounts for kinetic physics:
non-linear Landau damping,
gyro-resonant instability, . . .

Galilean invariant and causal
transport

energy and momentum
conserving Thomas, CP, Pakmor (subm.)
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MeerKAT image of the Galactic Center Haywood+ (Nature, 2019)



  

MeerKAT image of the Galactic Center Haywood+ (Nature, 2019)
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Radio synchrotron harps: the model

shock acceleration scenario
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Radio synchrotron harps: testing CR propagation

Haywood+ (Nature, 2019)
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Cosmic rays in galaxy formation

Werhahn, CP, Girichidis+ (in prep.)
Cosmic rays and non-thermal emission in simulated galaxies: I. & II.
MHD + CR advection + anisotropic diffusion:

{
1010,1011,1012

}
M�

steady-state spectra of CR protons, primary & secondary electrons
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From a starburst galaxy to a Milky Way analogy
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Comparing CR spectra to Voyager and AMS-02 data
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Comparing the positron fraction to AMS-02 data
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Simulation of a starburst galaxy
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Gamma-ray spectra of starburst galaxies
Messier 82
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gamma-ray spectra in starbursts dominated by pion decay

CR protons propagate in Kolmogorov turbulence: κ ∝ E0.3
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Far infra-red – gamma-ray correlation
Universal conversion: star formation→ cosmic rays→ gamma rays
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Far infra-red – gamma-ray correlation
Universal conversion: star formation→ cosmic rays→ gamma rays
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Universal conversion: star formation→ cosmic rays→ gamma rays
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Far infra-red – gamma-ray correlation
Universal conversion: star formation→ cosmic rays→ gamma rays
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Far infra-red – gamma-ray correlation
Contributions of hadronic and leptonic emission to the gamma-ray luminosity
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gamma-ray emission in starbursts dominated by pion decay

leptonic component (primarily inverse Compton) dominates at
low star formation rates
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Conclusions
CR-driven plasma instabilities:

discovery of new intermediate-scale instability, which grows faster than
the gyro-resonant instability

implications for CR transport and feedback in galaxies, electron injection
into diffusive shock acceleration, and CR escape from acceleration sites

CR transport in galaxies:

novel theory of CR transport mediated by Alfvén waves and coupled to
magneto-hydrodynamics

synchrotron harps: CR streaming dominates over diffusion

CR-induced signatures in galaxies

Voyager’s high electron-to-proton ratio at low energies explained by
Coulomb losses of steady-state spectra

leptonic gamma-ray contribution important at low star formation rates
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Literature for the talk

Cosmic ray instabilities and transport:
Shalaby, Thomas, Pfrommer, A new cosmic ray-driven instability, 2020,
submitted, arXiv:2010.11197.

Thomas & Pfrommer, Cosmic-ray hydrodynamics: Alfvén-wave regulated
transport of cosmic rays, 2019, MNRAS, 485, 2977.

Thomas, Pfrommer, Enßlin, Probing cosmic ray transport with radio synchrotron
harps in the Galactic center, 2020, ApJL, 890, L18.

Cosmic rays in galaxies:
Werhahn, Pfrommer, Girichidis, Puchwein, Pakmor, Cosmic rays and
non-thermal emission in simulated galaxies. I. Electron and proton spectra
explain Voyager-1 data, in prep.

Werhahn, Pfrommer, Girichidis, Winner, Cosmic rays and non-thermal emission
in simulated galaxies. II. γ-ray maps, spectra and the far infrared-γ-ray relation,
in prep.
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Analogies of CR and radiation hydrodynamics
CRs and radiation are relativistic fluids

regime CR transport radiation HD analogy
• tangled B, CR diffusion diffusive transport

strong scattering in clumsy medium

• resolved B, CR streaming Thomson scattering (τ � 1)
strong scattering with va → advection with v

• weak scattering CR streaming flux-limited diffusion/
and diffusion M1 closure (τ & 1)

• no scattering CR propagation vacuum propagation
with c

Jiang & Oh (2018), Thomas & CP (2019)

but: CR hydrodynamics is charged RHD
→ take gyrotropic average and account for anisotropic transport
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CR vs. radiation hydrodynamics
capitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018)

derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)

lab-frame equ’s for CR energy and momentum density, εcr and fcr/c2

∂εcr

∂t
+∇ · fcr = −w± · bb

3κ±
· [fcr −w±(εcr + Pcr)]− v ·gLorentz+Sε

1
c2

∂fcr

∂t
+∇ · Pcr = − bb

3κ±
· [fcr −w±(εcr + Pcr)]− gLorentz +Sf

Alfvén wave velocity in lab frame: w± = v ± va,
CR scattering frequency ν̄± = c2/(3κ±)

lab-frame equ’s for radiation energy and momentum density, ε and f/c2

(Mihalas & Mihalas, 1984, Lowrie+ 1999):

∂ε

∂t
+∇ · f = −σsv · [f − v · (ε1 + P)] + Sa

1
c2

∂f
∂t

+∇ · P = −σs [f − v · (ε1 + P)] + Sav

problem: CR lab-frame equation requires resolving rapid gyrokinetics!
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CR vs. radiation hydrodynamics
capitalize on analogies of CR and radiation hydrodynamics (Jiang & Oh 2018)

derive two-moment equations from CR Vlasov equation (Thomas & CP 2019)

lab-frame equ’s for CR energy and momentum density, εcr and fcr/c2

∂εcr

∂t
+∇ · fcr = −w± · bb

3κ±
· [fcr −w±(εcr + Pcr)]− v ·gLorentz+Sε

1
c2

∂fcr

∂t
+∇ · Pcr = − bb

3κ±
· [fcr −w±(εcr + Pcr)]− gLorentz +Sf

Alfvén wave velocity in lab frame: w± = v ± va,
CR scattering frequency ν̄± = c2/(3κ±)

lab-frame equ’s for radiation energy and momentum density, ε and f/c2

(Mihalas & Mihalas, 1984, Lowrie+ 1999):

∂ε

∂t
+∇ · f = −σsv · [f − v · (ε1 + P)] + Sa

1
c2

∂f
∂t

+∇ · P = −σs [f − v · (ε1 + P)] + Sav

solution: transform in comoving frame and project out gyrokinetics!
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Alfvén-wave regulated CR transport

comoving equ’s for CR energy and momentum density (along B), εcr

and fcr/c2, and Alfvén-wave energy densities εa,± (Thomas & CP 2019)

∂εcr

∂t
+∇ · [v(εcr + Pcr) + bfcr] = v · ∇Pcr

− va

3κ+
[fcr − va(εcr + Pcr)] +

va

3κ−
[fcr + va(εcr + Pcr)] ,

∂fcr/c2

∂t
+∇ ·

(
v fcr/c2

)
+ b · ∇Pcr = −(b · ∇v) · (bfcr/c2)

− 1
3κ+

[fcr − va(εcr + Pcr)]− 1
3κ−

[fcr + va(εcr + Pcr)] ,

∂εa,±
∂t

+∇ · [v(εa,± + Pa,±)± vabεa,±] = v · ∇Pa,±

± va

3κ±
[fcr ∓ va(εcr + Pcr)]− Sa,±.
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