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The origin of seed electrons in radio halos and relics
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Giant radio halos in a nutshell

Coma cluster, color: X-ray, contours: radio
X-ray: Snowden/MPE/ROSAT; radio: Brown/Westerbork

present in > 30 clusters

Mpc size

trace X-ray emission

unpolarized

steep spectrum αν & 1

(sub) µJy/arcsec2 surface
brightness

cluster merger connection

evidence of volume-filling magnetic fields in clusters

τsyn . 100 Myr→ efficient in-situ electron acceleration
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Radio vs. X-ray luminosity – two radio populations
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Radio luminosity - X-ray luminosity
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Radio luminosity - X-ray luminosity
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Radio halo theory – (i) hadronic model
pCR + p → π± → e±

strength:

all required ingredients available:
shocks to inject CRp, gas protons as targets, magnetic fields

predicted luminosities and overall morphologies match
observations without tuning

weakness:

all clusters should have radio halos
→ putative solution: super-Alfvénic CR streaming (Enßlin+ 2011, Wiener+ 2013)

does not explain spectral curvature and steep-spectrum sources
→ putative sol.’n: energy-dependent CR diffusion (Enßlin+ 2011, Wiener+ 2013)

requires increasing CR pressure toward the outskirts of Coma
(Brunetti+ 2013, Zandanel+ 2014)
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Observation – simulation of A2256

Clarke & Enßlin (2006) C.P. (in prep.)

red/yellow: thermal X-ray emission,
blue/contours: 1.4 GHz radio emission with giant radio halo and relic
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Coma radio halo: surface brightness profile
Challenging the hadronic model with extended radio halo profiles?

simulations: pure CR advection

C.P.+ (2008), Pinzke & C.P. (2010), Brunetti+ (2013)

solid: CR streaming→ PCR ∼ const.

Zandanel, C.P., Prada (2014)
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Radio halo theory – (ii) re-acceleration model

strength:

all required ingredients available:
radio galaxies & relics to inject CRe, plasma waves to re-accelerate, . . .

reported complex radio spectra emerge naturally

clusters without halos← less turbulent

weakness:

Fermi II acceleration is inefficient and scales as (v/c)2

plasma problem: CRe isotropization required by re-acceleration
via transit time damping

CRe cool rapidly: seed population for re-acceleration?
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Coma radio halo: re-acceleration model
Good fit to profile and spectrum, but many free parameters and assumptions!

Brunetti+ (2013)
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The physics of turbulent re-acceleration

compressible turbulence can energize particles via gyroresonant
interactions

ω − k‖v‖ = n Ω/γ, n = ±1,±2, . . .

wave vector k‖ and particle velocity v‖ are parallel to B and Ω = eB/me

transit time damping (n = 0):
v‖ = ω/k‖ = vph,‖ ∼ cs

→ only large pitch-angle CRs
can “surf the waves”

only a fraction of cs/c ∼ 0.3%
goes into CRs, most energy
ends up in thermal electrons

mechanism: magnetic moment
of CRs resonates with the
time-varying magnetic field
(from the fast modes)

Brunetti & Jones (2014)
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Turbulent re-acceleration: spectral evolution

electrons protons

time timeradio 
window

acceleration acceleration

losses

Brunetti & Lazarian (2007, 2011)
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But the re-acceleration model has a missing link . . .
. . . it needs seed electrons, which have never been calculated
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Simulation;  ζp<0.1, ECR=0.003Eth
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Pinzke, Oh, C.P. (2015)

cosmological simuations do not reproduce the required
population of seed electrons
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Method

→ integrate Fokker-Planck equation to follow momentum diffusion in
a cosmological simulation with CR proton/electron physics:
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Coma radio halo: multifrequency profiles

even idealized models (Brunetti+ 2013) have problems:
→ spectral steepening with radius seen in observations not
reproduced with models
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Pinzke, Oh, C.P. (2015)

possibilities:

1.4 GHz zero-point too high

observed B-field profile
wrong

new plasma physics

→ can we match the more reliable
352 MHz data? (Brown & Rudnick 2011)
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Solution I: changing the turbulent profile

Shaw+ (2010)
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Pinzke, Oh, C.P. (2015)

note: in practice we have to separate compressible turbulence from
bulk motions!
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Solution II: cosmic-ray streaming
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note: in practice we have to simultaneously simulate cosmic-ray
streaming and turbulent re-acceleration!
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Solution III: primary fossil electrons as seeds
Need high electron acceleration efficiency

recent plasma simulations
with PIC codes . . .

. . . find electrons
efficiently accelerated in
perpendicular shocks
(Guo, Sironi, Narayan 2015)

. . . find ions efficiently
accelerated in parallel
shocks (Caprioli & Spitkovsky 2014)
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→ so quasi-perpendicular shock regions might satisfy our
requirements!
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Coma radio spectrum
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all 3 models match the observed radio spectrum

pure hadronic model fails (only DSA, no turbulent re-acceleration)
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How can we disentangle our models?
Gamma-ray observations by Fermi-LAT are the key

Fermi-LAT can probe M-streaming and M-turbulence in near future!
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Radio relics – great tools for studying shock physics

van Weeren+ (2010)

trace shocks in cluster
outskirts

spectral index: shock Mach
number

spectral ageing: B-field
strength

polarization: B-field
orientation
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Biggest unknown: shock acceleration efficiency

merging shocks dominated by low Mach number shocks

these shocks have low acceleration efficiencies

how many will LOFAR see?
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A poster child: A2256
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Build-up of the fossil electron distribution
Strong structure formation shocks during the era of cluster formation

IC/synchr.
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Electron cooling times

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

kinetic electron energy E [GeV]

el
ec

tr
o

n
lo

ss
ti

m
es

ca
le

s,
τ
=

E
/Ė
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Illuminating radio relics
Re-acceleration of fossil electrons vs. primary acceleration

cr
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cooled fossil

distribution

Maxwellian
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recent (merger) shock:
critical spectral index α
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Illuminating radio relics
Re-acceleration of fossil electrons vs. primary acceleration

fossil (re−)acceleration
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cooled fossil

distribution
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weak shock with

primary acceleration wins

strong shock with

IC/synchr.

α > α   : 

α < α   : cr

cr

wins
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Illuminating radio relics
Re-acceleration of fossil electrons vs. primary acceleration

crand so does α

p  f2log 

~ p
4

ep /m  clog1

cooled fossil

distribution

Maxwellian

IC/synchr.

last (merger) shock and its strength,
fossil normaliztion depends on time to
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Time evolution of the fossil electron distribution
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Fossil CR electron population
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Direct acceleration vs. Fermi-I re-acceleration

2 3 4 5 6 7 8

10-3

10-2

10-1

100

101

102

103

f(
p
) 

ra
ti

o
s

p = 104

p = 103

fself-sim(reacc., M-αR) / fCR(direct inj., M-αR)

fself-sim(reacc., M-αR) / fCR(direct inj., M-const)

fCR(direct inj., M-αR) / fCR(direct inj., M-const)

M 2 3 4 5 6

1026

1028

1030

1032

1034

P
1

.4
 [

er
g

 s
-1

 H
z-1

]

1.17 0.75 0.63 0.58 0.56
radio spectral index α

ν

2 3 4 5 61026

1028

1030

1032

1034

1026

1028

1030

1032

1034

A2256         
     

A2744         
     

A3667-NW         
  

Sausage         
   

Toothbrush         

observations
reacc. fossil (M-αR)
direct inj. (M-αR)
constant inj. (M-const)

M

Pinzke, Oh, C.P. (2012)

the bottom line:

fossil contribution comparable to direct injection at highM

fossils dominate at lowM
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Radio relics – the future
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→ the relic luminosity function:

n(> P1.4) =

∫
dP1.4

dn
dP1.4

dn
dP1.4

=
dn

dM
dM
dP1.4

depends on the Mach number dis-
tribution and theM−P1.4 relation!

bright prospects for LOFAR:

Fermi-I reacceleration predicts a few 1000 radio relics per Gpc3

direct injection predicts a few 100 luminous radio relics

Christoph Pfrommer Radio Halos and Relics in Galaxy Clusters



Radio halos
Radio relics

Motivation
Simulations
Conclusions

Conclusions on radio halos and relics

halos: producing seed electrons for turbulent reacceleration
require modifications to the standard picture:

flatter turbulent profile
CR streaming
high CRe/p injection

relics: fossil electrons could allow radio relics to be seen at low
Mach numbers
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Turbulent pressure profiles in our 3 models
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