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Introduction Puzzles
Galactic winds
Cosmic ray physics

Puzzles in galaxy formation
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Introduction Puzzles
Galactic winds
Cosmic ray physics

How are galactic winds driven?

@ thermal pressure provided by
supernovae or AGNs?

@ radiation pressure and
photoionization by massive
stars or QSOs?

@ cosmic-ray (CR) pressure and
Alfvén wave heating of CRs
NASA/JPL-Caltech/STScl/GXC/UofA accelerated at supernova
super wind in M82 shocks?
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Introduction Puzzles
Galactic winds
Cosmic ray physics

How are galactic winds driven?

@ thermal pressure provided by
supernovae or AGNs?

@ radiation pressure and
photoionization by massive
stars or QSOs?

@ cosmic-ray (CR) pressure and
Alfvén wave heating of CRs
NASA/JPL-Caltech/STScl/GXC/UofA accelerated at supernova
super wind in M82 shocks?

observed energy equipartition between cosmic rays, thermal gas and

magnetic fields

— suggests self-regulated feedback loop with CR driven winds /@
HITS
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Introduction Puzzles
Galactic winds
Cosmic ray physics

Why are CRs important for wind formation?

Radio halos in disks: CRs and magnetic fields exist at the disk-halo interface

NGC5775 6.2cm VLA Total Intensity + B-Vectors HPBW=16"
1 1

@ CR pressure drops less
quickly than thermal
pressure (P x p7)

@ CRs cool less efficiently
than thermal gas

DECLINATION (J2000)

@ CR pressure energizes the
wind — “CR battery”

@ poloidal (“open”) field lines

00 . . .
at wind launching site
%%0s T N I — CR-driven Parker
Tiillmann+ (2000) instability
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Introduction Puzzles
Galactic winds
Cosmic ray physics

Cosmic-ray driven winds — literature

@ previous theoretical works:
Ipavich (1975), Breitschwerdt+
(1991), Zirakashvili+ (1996), Ptuskin+
(1997), Breitschwerdt+ (2002),
Socrates+ (2008), Everett+ (2008,
2010), Samui+ (2010), Dorfi &
Breitschwerdt (2012)

@ previous 3D simulations:
CR streaming: Uhlig, C.P.+ (2012)
CR diffusion: Booth+ (2013),
Hanasz+ (2013), Salem & Bryan
(2014)

Temperature [K]

Uhlig, C.P+ (2012)
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Introduction Puzzles
Galactic winds
Cosmic ray physics

Interactions of CRs and magnetic fields

@ CRs scatter on magnetic fields — isotropization of CR momenta

@ CR Streaming InStablllty Kulsrud & Pearce 1969

o if Vo > va, CR current provides
steady driving force, which amplifies
an Alfvén wave field in resonance
with the gyroradii of CRs

e scattering off of this wave field limits
the (GeV) CRs’ bulk speed ~ va

e wave damping: transfer of CR energy
and momentum to the thermal gas
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Introduction Puzzles
Galactic winds
Cosmic ray physics

Interactions of CRs and magnetic fields

@ CRs scatter on magnetic fields — isotropization of CR momenta

@ CR Streaming InStablllty Kulsrud & Pearce 1969

o if Vo > va, CR current provides
steady driving force, which amplifies
an Alfvén wave field in resonance
with the gyroradii of CRs

e scattering off of this wave field limits
the (GeV) CRs’ bulk speed ~ va

e wave damping: transfer of CR energy
and momentum to the thermal gas

— CRs exert a pressure on the thermal gas by means of
scattering off of Alfvén waves /‘@H.Ts
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Introduction Puzzles
Galactic winds
Cosmic ray physics

CR transport

@ total CR velocity ver = v + Vg + Vg (Where v = vgys)

@ CRs stream down their own pressure gradient relative to the gas,
CRs diffuse in the wave frame due to pitch angle scattering by
MHD waves (both transports are along the local direction of B):

2

Py .
h — _ = —Kdi
|Vpcr| with va 47T/)7 Vi Kdi

V Py
Por

Vst = —Va
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Introduction Puzzles
Galactic winds
Cosmic ray physics

CR transport

@ total CR velocity ver = v + Vg + Vg (Where v = vgys)

@ CRs stream down their own pressure gradient relative to the gas,
CRs diffuse in the wave frame due to pitch angle scattering by
MHD waves (both transports are along the local direction of B):

C ! cr . 32 ; I cr
= hva=1/— i = —Kdi
Vst Va |VPcr| with va /), Vi Kdi Pcr 5

@ energy equations with ¢ = ey, + pv?/2 (neglecting CR diffusion):

Oe

§+V'[(€+Pth+Pcr)V] = Pcrv’v+|VSt'VPcr|
Oe
a;r+v‘ (Ech)—FV- [(5cr+Pcr)Vst] = —Pch‘V_|Vst‘VPcr|
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Introduction Puzzles
Galactic winds
Cosmic ray physics

CR transport

@ total CR velocity ver = v + Vg + Vg (Where v = vgys)

@ CRs stream down their own pressure gradient relative to the gas,
CRs diffuse in the wave frame due to pitch angle scattering by
MHD waves (both transports are along the local direction of B):

C ! cr . 32 ; I cr
= hva=1/— i = —Kdi
Vst Va |VPcr| with va /), Vi Kdi Pcr 5

@ energy equations with ¢ = ey, + pv?/2 (neglecting CR diffusion):

Oe

E+V'[(€+Pth+Pcr)V] = PCI’V°V+|VSI'VPCF|
Oe
a;r +V. (Ecrv) +V. [(5cr + Pcr)Vst] = —PyV-.-v-— |Vst . VPcr|
O g [ta(V+Vs)] = —PuV-(V+vg) <3
Ot Ecr st N o . /\<IHITS
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Physics
Galactic winds Simulations
Open questions

Cosmological moving-mesh code AREPO (springel 2010)
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Physics
Galactic winds Simulations
Open questions

Simulations — flowcha

ISM observables: Physical processes in the ISM:

X-ray, Ha, HI, ...
emission

stellar
spectra

loss processes
gain processes

observables N
C.P,, EnBlin, Springel (2008) populations HITS
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Galactic winds

Open g

Simulations with cosmic ray physics

ISM observables: Physical processes in the ISM:

o EH &
super-
<
N>

loss processes

gain processes
observables
C.P,, EnBlin, Springel (2008) populations HITS

X-ray, Ha, HI, ...
emission

stellar
spectra

radio
synchrotron

gamma-ray
emission
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Physics
Galactic winds Simulations
Open questions

Simulation setup

Pfrommer, Pakmor, Springel, in prep. /4
note: MHD + CR physics with isotropic CR diffusion DUHITS
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Galactic winds
Open questions

CR driven winds: density and vertical velocity

10''M, halo: gas density in edge-on slice 10"'M, halo: vertical gas velocity in edge-on slice
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@ CR pressure launches super wind that escapes from the halo
@ forming disk collimates the wind into a biconical morphology with
a time-varying opening angle
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Galactic winds Simulations

CR driven winds: density and vertical velocity

10''M, halo: gas density in edge-on slice
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0
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@ CR pressure launches super wind that escapes from the halo

@ forming disk collimates the wind into a biconical morphology with
a time-varying opening angle
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Galactic winds
Open questions

CR driven winds: density and vertical velocity

10''M, halo: gas density in edge-on slice 10"'M, halo: vertical gas velocity in edge-on slice
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@ CR pressure launches super wind that escapes from the halo
@ forming disk collimates the wind into a biconical morphology with
a time-varying opening angle \
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Physics
Galactic winds Simulations
Open questions

Cosmic ray driven wind: mechanism

Eh
gas dominated
VPqg+ VPy > pVe
w outfiow )
BT
CR streaming: Uhlig, C.P.+ (2012) N
)<IHITS

CR diffusion: Booth+ (2013), Hanasz+ (2013), Salem & Bryan (2014)
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Physics
Galactic winds Simulations
Open questions

CR driven winds: temperature and Xer = Per/ P

10'"M, halo: gas temperature in edge-on slice . 10"'M, halo: CR-to-thermal pressure ratio in edge-on slice

4
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10!
—40
—40 -30  -20  -10 10 20 30 40 —40 30 20 10 10 20 30 40

@ CR pressure dominates over thermal one in halo (y = 4/3 vs. 5/3)
@ CR-induced Alfvén waves heat and energize the wind .
— acceleration through additional energy deposition //%L.Ts
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Physics
Galactic winds Simulations
Open questions

CR driven winds: temperature and Xer = Per/ P

10'"M, halo: gas temperature in edge-on slice
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© 10"'M, halo: CR-to-thermal pressure ratio in edge-on slice
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@ CR pressure dominates over thermal one in halo (y = 4/3 vs. 5/3)

@ CR-induced Alfvén waves heat and energize the wind .
— acceleration through additional energy deposition ,/L.Ts
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Galactic winds

Physics
Simulations
Open questions

CR driven winds: temperature and Xer = Per/ P

10'"M, halo: gas temperature in edge-on slice

<lkpel
T[K]

0 10 2 3 40
xTkpel

2lkpe]

. 10"'M, halo: CR-to-thermal pressure ratio in edge-on slice

—40
~40
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0
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4

Xcr

@ CR pressure dominates over thermal one in halo (y = 4/3 vs. 5/3)

@ CR-induced Alfvén waves heat and energize the wind
— acceleration through additional energy deposition

/ ’/\JHITS
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Physics
Galactic winds Simulations
Open questions

CR driven winds: B field, face and edge-on view

10''M, halo: B in face-on slice 10''M;, halo: B in edge-on slice

10'

vIkpel

B/ G
[kpe]

@ disk: magnetic shear amplification aligns B with velocity field

-} due to time varying collimation

@ narrower wind — faster outflow — lower density channel

hristoph Pfromm Cosmic rays a netic fields in galaxies
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Physics
Galactic winds Simulations
Open questions

CR driven winds: B field, face and edge-on view

10''M, halo: B in face-on slice 10''M;, halo: B in edge-on slice

10!

10° 100
z 2 z 2
107! B 107!
-10
102 -2 ) 102
x [kpe]
@ disk: magnetic shear amplification aligns B with velocity field
-} due to time varying collimation
@ narrower wind — faster outflow — lower density channel /@H.Ts
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Physics
Galactic winds Simulations
Open questions

Halo B field: observations vs. simulations

S @ | : h
NGC 891, Krause (20@’ > 1
/” > . : <%

. . —

O i
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Physics
Galactic winds Simulations
Open questions

CR streaming vs. diffusion: estimates

@ CRs cannot be transported faster than the Alfvén speed over
macroscopic distances:

VP, !
I cr| < Va

Vhit = K———(—
€or + Por

= limit on diffusion coefficient  (varies spatially and temporarily)
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Physics
Galactic winds Simulations
Open questions

CR driven winds: va and v/ va

10'"M, halo: Alfvén velocity in edge-on slice 10'"M, halo: Vgigy/ v, in edge-on slice
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“ 40
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@ 3 Gyr: stationary outflow with thick CR disk — vyt /va < 1
(using a Galactic diffusion coefficient x ~ 10%® cm?s~")

Cosmic rays magnetic fields in galaxies



Physics
Galactic winds Simulations
Open questions

CR driven winds: va and v/ va

10'"M, halo: Alfvén velocity in edge-on slice

100
" 10!
% - 105
- ol 40 107
@ 3 Gyr: stationary outflow with thick CR disk — vyt /va < 1
(using a Galactic diffusion coefficient x ~ 10%® cm?s~")
@ < 2 Gyr: small CR injection regions — it/ va > 1! /\<IHITS
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Physics
Galactic winds Simulations
Open questions

CR streaming vs. diffusion: estimates

@ CRs cannot be transported faster than the Alfvén speed over
macroscopic distances:

VP, !
I cr| < Va

Vhit = K———(—
€or + Por

= limit on diffusion coefficient  (varies spatially and temporarily)
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Physics
Galactic winds Simulations
Open questions

CR streaming vs. diffusion: estimates

@ CRs cannot be transported faster than the Alfvén speed over
macroscopic distances:

P | =i
I €or + Per

= limit on diffusion coefficient  (varies spatially and temporarily)
@ what happens during CR injection at a supernova remnant?

K

4L,

~ 103 km s~ kogl !~ 100,

Vaitt ~ cr,10 pc
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Physics
Galactic winds Simulations
Open questions

CR streaming vs. diffusion: estimates

@ CRs cannot be transported faster than the Alfvén speed over
macroscopic distances:

VP, !
I cr| < Va

Vhit = K———(—
€or + Por

= limit on diffusion coefficient  (varies spatially and temporarily)

@ what happens during CR injection at a supernova remnant?

i ~ 103 km 371 /€28L_1 ~ 1OOVA

Vaift ™~ 21 or, 10 pe

= flux-limited CR diffusion: prohibitively expensive because of
von-Neumann-type time step constraint (At o« Ax?/x), even for
implicit solvers

= simulate CR streaming! /\@st
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Physics
Galactic winds Simulations
Open questions

Modeling CR streaming

A challenging hyperbolic/parabolic problem

@ streaming equation (no heating):

Ocer
ot

+ V . [(€cr + PCI’)VSI] = 0

Vst = —sgn(B - V Pg)va

@ CR streaming ~ CR advection
with the Alfvén speed

ok HH 1 @ atlocal extrema, CR energy can
I O AR NI IR
e overshoot and develop
* gharmas (2010) unphysical oscillations

@ idea: regularize equations, similar to adding artificial viscosity
— diffusive at extrema, advective at gradients /@
HITS
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Physics
Galactic winds Simulations
Open questions

AREPO MHD simulations of CR driven galactic winds

the good: CR diffusion successfully launches super winds that
@ expel a large fraction of gas from the halo
°
@ enrich halo/circumgalactic medium with X-shaped B fields

@ suppress subsequent star formation

/\<I
HITS

Christoph Pfrommer Cosmic rays and magnetic fields in galaxies



Physics
Galactic winds Simulations
Open questions

AREPO MHD simulations of CR driven galactic winds

the good: CR diffusion successfully launches super winds that
@ expel a large fraction of gas from the halo
°
@ enrich halo/circumgalactic medium with X-shaped B fields

@ suppress subsequent star formation

the bad: constant (Galactic) diffusivity too simplified:
@ adequate for stationary outflow with thick CR disk

@ fails for non-equilibrium conditions during disk formation
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Physics
Galactic winds Simulations
Open questions

AREPO MHD simulations of CR driven galactic winds

the good: CR diffusion successfully launches super winds that
@ expel a large fraction of gas from the halo
°
@ enrich halo/circumgalactic medium with X-shaped B fields

@ suppress subsequent star formation

the bad: constant (Galactic) diffusivity too simplified:
@ adequate for stationary outflow with thick CR disk

@ fails for non-equilibrium conditions during disk formation

the ugly: CR streaming is a challenging hyperbolic/parabolic problem.. .

/<IHITS
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Radio and ~-ray emission
Cosmic-ray heating
Cooling flow problem Conclusions

Puzzles in galaxy formation

giant elliptical galaxy

spiral galaxy
dwarf galaxy

~TIAETTTT 2 20% of baryons |
(2] 4
]

€ i
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_‘C“ -2.0 *_
3 ]
% stellar feedback by 1
S -25 feedback | active galactic nuclei

Ke)

_30 . ‘ ‘ Moster+l(201 0)

12 13 14
log( halo mass )

Cosmic rays magnetic fields in galaxies
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Radio and ~-ray emission
Cosmic-ray heating
Cooling flow problem Conclusions

Feedback heating: M87 at radio wavelengths

v = 1.4 GHz (Owen+ 2000)

@ high-v: freshly accelerated CR electrons
low-v:

/ ]HITS
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Radio and ~-ray emission
Cosmic-ray heating
Cooling flow problem Conclusions

Feedback heating: M87 at radio wavelengths

v = 1.4 GHz (Owen+ 2000) v = 140 MHz (LOFAR/de Gasperin+ 2012)
@ high-v: freshly accelerated CR electrons

low-v:
@ LOFAR: same picture — puzzle of “missing fossil electrons”

@ solution: electrons are fully mixed with the dense cluster gas }@
and cooled through Coulomb interactions HITS
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Radio and ~-ray emission
Cosmic-ray heating
Cooling flow problem Conclusions

The gamma-ray picture of M87

@ high state is time variable

— jet emission
@ low state:
(1) steady flux 5 -
:E” 10 ‘
‘.
(3) spatial extension is under "
investigation (.?) Rieger & Aharonian (2012)

— confirming this triad would be smoking gun for first v-ray
signal from a galaxy cluster!

/\<I
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Radio and ~-ray emission
Cosmic-ray heating
Cooling flow problem Conclusions

AGN feedback = cosmic ray heating (?)

hypothesis: low state v-ray emission traces 7° decay within cluster

@ cosmic rays excite Alfvén
waves that dissipate the
energy — heating rate

Her = — Vst VP

(Loewenstein, Zweibel, Begelman 1991,
Guo & Oh 2008, EnBlin+ 2011)

@ calibrate P to v-ray
emission and |Vg| = |Va|
to radio/X-ray emission

/\<I
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Radio and ~-ray emission
Cosmic-ray heating
Cooling flow problem Conclusions

AGN feedback = cosmic ray heating (?)

hypothesis: low state v-ray emission traces 7° decay within cluster

@ cosmic rays excite Alfvén 107
WaVGS that dissipate the 7: radial extent of radio halo:
. 107 E
energy — heating rate _

Her = —Vst - VP 2 E ]
(Loewenstein, Zweibel, Begelman 1991, i el B
Guo & Oh 2008, Enflin+ 2011) ]

@ calibrate P, to y-ray o teing e
emission and |Vg| = |Va| } 10 100
radius [kpc]

to radio/X-ray emission o 2013)

— cosmic-ray heating matches radiative cooling (observed in X-rays) .
and may solve the famous “cooling flow problem” in galaxy clusters! <,
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Radio and ~-ray emission
Cosmic-ray heating
Cooling flow problem Conclusions

Local stability analysis (1)

T*Hcr
TQCrad
heating
cooling
kT
@ isobaric perturbations to global thermal equilibrium /@
HITS

@ CRs are adiabatically trapped by perturbations
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Radio and ~-ray emission
Cosmic-ray heating
Cooling flow problem Conclusions

Local stability analysis (1)

T*Hcr
TQCrad
heating
cooling
kT
@ isobaric perturbations to global thermal equilibrium /@
HITS

@ CRs are adiabatically trapped by perturbations
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Radio and ~-ray emission
Cosmic-ray heating
Cooling flow problem Conclusions

Local stability analysis (1)

T*Hcr
TQCrad

heating

/
stable FP cooling
kT
@ isobaric perturbations to global thermal equilibrium /@
HITS

@ CRs are adiabatically trapped by perturbations
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Radio and ~-ray emission
Cosmic-ray heating
Cooling flow problem Conclusions

Local stability analysis (1)

T*Hcr
T%Craq separatrix
heating
P, i

region of stability |

. kT
@ isobaric perturbations to global thermal equilibrium /@
HITS

@ CRs are adiabatically trapped by perturbations
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Radio and ~-ray emission
Cosmic-ray heating
Cooling flow problem Conclusions

Local stability analysis (2)

Theory predicts observed temperature floor at kT ~ 1 keV

L Xcg = 031
5+ \ —_— - - XCR:0~031 —
1

~ |
g | ]
st ! “islands of stability” 1
3 |
g O
g I [ 1
B | |
o 1
= |
s [} ]
z 5 U | “ocean of instability”
L Lol L L Lol L L M
10° 10° 107 10°

temperature T [K] /\<I
C.P (2013) HITS
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Radio and ~-ray emission
Cosmic-ray heating
Cooling flow problem Conclusions

Virgo cluster cooling flow: temperature profile

X-ray observations confirm temperature floor at kT ~ 1 keV

[V

KT (keV)

1 10

R (arcmin) Matsushita+ (2002) /\<IHITS
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Radio and ~-ray emission
Cosmic-ray heating
Cooling flow problem Conclusions

Emerging picture of CR feedback by AGNs

(1) during buoyant rise of bubbles:
CRs diffuse and stream outward
— CR Alfvén-wave heating

CR streaming
and diffusion

turbulent advection:
adiabatic compression
nd CR energization

w# CR injection
) bubble disruption

/<IHITS
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Radio and ~-ray emission
Cosmic-ray heating
Cooling flow problem Conclusions

Emerging picture of CR feedback by AGNs

(1) during buoyant rise of bubbles:
CRs diffuse and stream outward
— CR Alfvén-wave heating

CR streaming

(2) if bubbles are disrupted, CRs are "
injected into the ICM and caught in a ’ ; i
turbulent downdraft that is excited by ' Biirhulcnt advection:
the rising bubbles adiabatic compression

. . . nd CR energization
— CR advection with flux-frozen field

— adiabatic CR compression and
energizing: Pe/Pgo = 643 ~ 20 for
compression factor § = 10

w# CR injection
(3) CR escape and outward stream- i bubole disruption

ing — CR Alfvén-wave heating
)<IHITS
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Radio and ~-ray emission
Cosmic-ray heating
Cooling flow problem Conclusions

Prediction: flattening of high-v radio spectrum

10000 : T T T T T T T T T T T L T T T T T \E
1000 E
= :
z  100E 3
E £ 3
5 r ]
2 C ]
M L ]
=

= op 3
F radio data E
[ continuous inj. ]
L continuous inj., switch off |
f —  hadronically induced emission E
L | | | N

10' 10° 10° 10* 10°

frequency v [MHz] /\<I
C.P. (2013) HITS
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Radio and ~-ray emission
Cosmic-ray heating
Cooling flow problem Conclusions

Conclusions on AGN feedback by cosmic-ray heating

@ LOFAR puzzle of “missing fossil electrons” solved by mixing with
dense cluster gas and Coulomb cooling

o
— estimate CR-to-thermal pressure of X = 0.31

@ CR Alfvén wave heating balances radiative cooling on all scales
within the radio halo (r < 35 kpc)

@ local thermal stability analysis predicts observed temperature
floor at KT ~ 1 keV

outlook: simulate steaming CRs coupled to MHD, cosmological
cluster simulations, improve ~-ray and radio observations ...

/\<I
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