Simulating cosmic rays, radio synchrotron and gamma-ray emission in star-forming galaxies

Christoph Pfrommer¹

in collaboration with

PhD students: Ehlert¹, Lemmerz¹, Thomas¹, Werhahn¹, Whittingham¹, Winner¹ Postdocs: Berlok¹, Buck¹, Shalaby¹, Girichidis², Sparre^{3,1}, Simpson⁴ Faculty: Puchwein¹, Pakmor⁵, Springel⁵

¹AIP Potsdam, ²U of Heidelberg, ³U of Potsdam, ⁴U of Chicago, ⁵MPA Garching Breakthroughs in Galaxy Formation, Schloss Ringberg, April 2022

DQC.

Introduction

Cosmic rays and gamma rays Magnetic fields and radio emission

Non-thermal emission processes

Probing cosmic ray physics and quantifying feedback energy

hadronic processes:

• pion decay:

$$p{+}ion \rightarrow \left\{ \begin{array}{ccc} \pi^0 & \rightarrow & \gamma\gamma \\ \pi^\pm & \rightarrow & e^\pm + 3\nu \end{array} \right.$$

photo-meson production:

$$\mathsf{p} + \gamma \rightarrow \left\{ \begin{array}{rrr} \pi^0 & \rightarrow & \gamma\gamma \\ \pi^\pm & \rightarrow & \mathsf{e}^\pm + 3\nu \end{array} \right.$$

• Bethe-Heitler pair production:

$$\mathsf{p} + \gamma
ightarrow \mathsf{p} + \mathbf{e}^+ + \mathbf{e}^-$$

< 合

Introduction Cosmic rays and gamma rays

Non-thermal emission processes

Probing cosmic ray physics and quantifying feedback energy

hadronic processes:

• pion decay:

 $p{+}\text{ion} \rightarrow \left\{ \begin{array}{ll} \pi^0 & \rightarrow & \gamma\gamma \\ \pi^\pm & \rightarrow & e^\pm + 3\nu \end{array} \right.$

photo-meson production:

$$\mathsf{p} + \gamma \rightarrow \left\{ \begin{array}{rrr} \pi^0 & \rightarrow & \gamma\gamma \\ \pi^\pm & \rightarrow & \mathbf{e}^\pm + \mathbf{3}\nu \end{array} \right.$$

• Bethe-Heitler pair production:

 $\mathbf{p} + \gamma \rightarrow \mathbf{p} + \mathbf{e}^+ + \mathbf{e}^-$

leptonic processes:

• inverse Compton:

 $\mathbf{e}^* + \gamma \to \mathbf{e} + \gamma^*$

- synchrotron radiation:
 - $e^* + B \rightarrow e + B + \gamma^*$
- bremsstrahlung:

$$e^* + ion \rightarrow e + ion + \gamma^*$$

イロト イポト イヨト イヨト

Introduction

Cosmic rays and gamma rays Magnetic fields and radio emission

A sketch of the non-thermal emission

Christoph Pfrommer

Radio and gamma-ray emission in star-forming galaxies

Introduction

Cosmic rays and gamma rays Magnetic fields and radio emission

Non-thermal emission in star-forming galaxies

- previous theoretical modeling:
 - one-zone steady-state models (Lacki+ 2010, 2011, Yoast-Hull+ 2013)
 - 1D transport models (Heesen+ 2016)
 - static Milky Way models (Strong & Moskalenko 1998, Evoli+ 2008, Kissmann 2014)

Introduction

Cosmic rays and gamma rays Magnetic fields and radio emission

Non-thermal emission in star-forming galaxies

- previous theoretical modeling:
 - one-zone steady-state models (Lacki+ 2010, 2011, Yoast-Hull+ 2013)
 - 1D transport models (Heesen+ 2016)
 - static Milky Way models (Strong & Moskalenko 1998, Evoli+ 2008, Kissmann 2014)

our theoretical modeling:

- run MHD simulations of galaxies at different halos masses and SFRs
- model cosmic rays (CRs): protons, primary and secondary electrons
- model all radiative processes from radio to gamma rays

Introduction

Cosmic rays and gamma rays Magnetic fields and radio emission

Non-thermal emission in star-forming galaxies

previous theoretical modeling:

- one-zone steady-state models (Lacki+ 2010, 2011, Yoast-Hull+ 2013)
- 1D transport models (Heesen+ 2016)
- static Milky Way models (Strong & Moskalenko 1998, Evoli+ 2008, Kissmann 2014)

our theoretical modeling:

- run MHD simulations of galaxies at different halos masses and SFRs
- model cosmic rays (CRs): protons, primary and secondary electrons
- model all radiative processes from radio to gamma rays
- gamma rays: understand hadronic vs. leptonic gamma rays ⇒ calorimetric fraction + cosmic ray feedback
- radio: understand magnetic dynamo, primary and secondary electrons

Radio and gamma-ray emission in star-forming galaxies

ntroduction

Cosmic rays and gamma rays Magnetic fields and radio emission

1. Cosmic rays and gamma rays

Werhahn, CP, Girichidis+ (2021a,b) *Cosmic rays and non-thermal emission in simulated galaxies: I & II* MHD + CR advection + anisotropic diffusion: $\{10^{10}, 10^{11}, 10^{12}\} M_{\odot}$ steady-state spectra of CR protons, primary & secondary electrons

Introduction Cosmic rays and gamma rays Magnetic fields and radio emission

Steady-state cosmic ray spectra

• solve the steady-state equation in every cell for each CR population:

$$rac{f(E)}{ au_{
m esc}} - rac{{\sf d}}{{\sf d}E} \left[f(E)b(E)
ight] = q(E)$$

- protons: Coulomb, hadronic and escape losses (re-normalized to ε_{cr, sim})
- electrons: Coulomb, bremsstr., IC, synchrotron and escape losses
 - primaries (re-normalized using $K_{ep} = 0.02$)
 - secondaries

Introduction Cosmic rays and gamma rays Magnetic fields and radio emission

Steady-state cosmic ray spectra

• solve the steady-state equation in every cell for each CR population:

$$\frac{f(E)}{\tau_{\rm esc}} - \frac{\mathsf{d}}{\mathsf{d}E} \left[f(E)b(E) \right] = q(E)$$

- protons: Coulomb, hadronic and escape losses (re-normalized to ε_{cr, sim})
- electrons: Coulomb, bremsstr., IC, synchrotron and escape losses
 - primaries (re-normalized using $K_{ep} = 0.02$)
 - secondaries
- steady state assumption is fulfilled in disk and in regions dominating the non-thermal emission but not at low densities, at SNRs and in outflows

Christoph Pfrommer

Radio and gamma-ray emission in star-forming galaxies

Cosmic rays and gamma rays

From a starburst galaxy to a Milky Way analogy

Radio and gamma-ray emission in star-forming galaxies

Christoph Pfrommer

Cosmic rays and gamma rays

From a starburst galaxy to a Milky Way analogy

Radio and gamma-ray emission in star-forming galaxies

Christoph Pfrommer

Introduction Cosmic rays and gamma rays

Magnetic fields and radio emission

Comparing CR spectra to Voyager and AMS-02 data

Christoph Pfrommer

Radio and gamma-ray emission in star-forming galaxies

Introduction Cosmic rays and gamma rays Magnetic fields and radio emiss

Comparing the positron fraction to AMS-02 data

Introduction Cosmic rays and gamma rays Magnetic fields and radio emissio

Comparing the positron fraction to AMS-02 data

Introduction

Cosmic rays and gamma rays Magnetic fields and radio emission

Simulation of a starburst galaxy

Pfrommer Radio and gamma-ray emission in star-forming galaxies

AIP

Christoph Pfrommer

Cosmic rays and gamma rays

Simulation of a starburst galaxy

Radio and gamma-ray emission in star-forming galaxies

Christoph Pfrommer

Introduction Cosmic rays and gamma rays Magnetic fields and radio emissio

Gamma-ray spectra of starburst galaxies

NGC 253

Messier 82

Werhahn, CP+ (2021b)

- gamma-ray spectra in starbursts dominated by pion decay
- CR protons propagate in Kolmogorov turbulence: $\kappa \propto E^{0.3}$

Introduction Cosmic rays and gamma rays

Magnetic fields and radio emission

Far infra-red – gamma-ray correlation

Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

Introduction Cosmic rays and gamma rays

Far infra-red – gamma-ray correlation

Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

Christoph Pfrommer Radio and gamma-ray emission in star-forming galaxies

Introduction Cosmic rays and gamma rays

Far infra-red – gamma-ray correlation

Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

Christoph Pfrommer Radio and gamma-ray emission in star-forming galaxies

Introduction Cosmic rays and gamma rays

Far infra-red – gamma-ray correlation

Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

Christoph Pfrommer Radio and gamma-ray emission in star-forming galaxies

Introduction Cosmic rays and gamma rays Magnetic fields and radio emission

Far infra-red – gamma-ray correlation

Hadronic vs. leptonic emission and calorimetric fraction across galaxy scales

Werhahn, CP+ (2021b)

- pion decay dominates gamma-ray emission in starbursts
- leptonic inverse Compton dominates at low SFRs

Introduction Cosmic rays and gamma rays Magnetic fields and radio emission

Far infra-red – gamma-ray correlation

Hadronic vs. leptonic emission and calorimetric fraction across galaxy scales

Werhahn, CP+ (2021b)

- pion decay dominates gamma-ray emission in starbursts
- leptonic inverse Compton dominates at low SFRs
- calorimetric energy fraction in starbursts $\eta_{cal,p} \sim 0.5$: half of CR energy available for feedback \Rightarrow galactic winds
- faster CR diffusion decreases calorimetric fraction at low SFRs ⇒ more CR feedback

< < >> < </>

Introduction Cosmic rays and gamma rays Magnetic fields and radio emission

2. Magnetic fields and radio emission

CP, Werhahn, Pakmor+ (2022), Werhahn, CP, Girichidis+ (2021c) Simulating radio synchrotron emission in star-forming galaxies MHD + CR advection + anisotropic diffusion: $\{10^{10}, 10^{11}, 10^{12}\} M_{\odot}$ steady-state spectra of CR protons, primary & secondary electrons

Introduction Cosmic rays and gamma rays Magnetic fields and radio emission

Time evolution of SFR and energy densities

• CR pressure feedback suppresses SFR more in smaller galaxies

- energy budget in disks is dominated by CR pressure
- magnetic dynamo faster in Milky Way galaxies than in dwarfs

 Introduction

 Galaxy formation
 Cosmic rays and gamma rays

 Magnetic fields and radio emission

Time evolution of CR and magnetic energy densities

- CRs diffuse out of galaxies \Rightarrow lowers ε_{cr} in disk
- CR diffusion quenches large-scale dynamo \Rightarrow lowers ε_B
- both effects decrease synchrotron emissivity
- magnetic field reaches saturation after initial growth phase: small-scale dynamo?

Introduction Cosmic rays and gamma rays Magnetic fields and radio emission

Kinetic and magnetic power spectra

Turbulent small-scale dynamo in different analysis regions

- $E_B(k)$ superposition of form factor and turbulent spectrum
- pure turbulent spectrum outside steep central B profile

Kinetic and magnetic power spectra: different halos

Saturation mechanisms of turbulent small-scale dynamo

- inverse cascade saturates close to equipartition in Milky Way
- inverse cascade stalls in dwarf galaxies: equipartition not with total kinetic energy but with turbulent energy

Introduction Cosmic rays and gamma rays Magnetic fields and radio emission

MHD galaxy simulation with cosmic rays

9+ (2017)

Christoph Pfrommer Radio and gamma-ray emission in star-forming galaxies

Introduction Cosmic rays and gamma rays Magnetic fields and radio emission

Simulated radio emission: $10^{12} \, M_{\odot}$ halo

Christoph Pfrommer Radio and gamma-ray emission in star-forming galaxies

Introduction Cosmic rays and gamma rays Magnetic fields and radio emission

Simulated radio emission: $10^{11} M_{\odot}$ halo

Christoph Pfrommer Radio and gamma-ray emission in star-forming galaxies

Introduction Cosmic rays and gamma rays Magnetic fields and radio emission

Far infra-red - radio correlation

Universal conversion: star formation \rightarrow cosmic rays \rightarrow radio

Introduction Cosmic rays and gamma rays Magnetic fields and radio emission

Radio-ray spectra of starburst galaxies

synchrotron spectra too steep (cooling + diffusion losses)

Introduction Cosmic rays and gamma rays Magnetic fields and radio emission

Radio-ray spectra of starburst galaxies

- synchrotron spectra too steep (cooling + diffusion losses)
- synchrotron absorption (low-ν) and thermal free-free emission (high-ν)

Introduction Cosmic rays and gamma rays Magnetic fields and radio emission

Radio-ray spectra of starburst galaxies

- Werhahn, CP+ (2021c)
- synchrotron spectra too steep (cooling + diffusion losses)
- synchrotron absorption (low-ν) and thermal free-free emission (high-ν) required to match (total and central) spectra

Introduction Cosmic rays and gamma rays Magnetic fields and radio emission

Steady-state vs. evolved CR electron spectra

Werhahn+ (in prep.): PRELIMINARY

Introduction Cosmic rays and gamma rays Magnetic fields and radio emission

Steady-state vs. evolved CR electron spectra

Introduction Cosmic rays and gamma rays Magnetic fields and radio emission

Steady-state vs. evolved CR electrons: emission maps

Conclusions on non-thermal emission in galaxies

- energy budget in large galaxies is dominated by CR pressure
 ⇒ star formation suppressed
- turbulent small-scale dynamo grows magnetic fields in isolated galaxies similar to cosmological settings
- magnetic energy saturate close to equipartition with the turbulent energy

Conclusions on non-thermal emission in galaxies

- energy budget in large galaxies is dominated by CR pressure
 ⇒ star formation suppressed
- turbulent small-scale dynamo grows magnetic fields in isolated galaxies similar to cosmological settings
- magnetic energy saturate close to equipartition with the turbulent energy
- global $L_{\text{FIR}} L_{\gamma}$ correlation enables us to test the calorimetric assumption: half of CR energy available for feedback in starbursts and more at low SFRs
- global L_{FIR} L_{radio} reproduced for galaxies with saturated magnetic fields, scatter due to viewing angle and CR transport
- synchrotron absorption (low-ν) and thermal free-free emission (high-ν) required to flatten cooled radio synchrotron spectra

イロト イポト イヨト イヨト

Introduction Cosmic rays and gamma rays Magnetic fields and radio emission

CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtioN

Christoph Pfrommer

Radio and gamma-ray emission in star-forming galaxies

Introduction Cosmic rays and gamma rays Magnetic fields and radio emission

Literature for the talk

Cosmic rays and non-thermal emission in galaxies:

- Werhahn, Pfrommer, Girichidis, Puchwein, Pakmor, Cosmic rays and non-thermal emission in simulated galaxies. I. Electron and proton spectra explain Voyager-1 data, 2021a, MNRAS 505, 3273.
- Werhahn, Pfrommer, Girichidis, Winner, Cosmic rays and non-thermal emission in simulated galaxies. II. γ-ray maps, spectra and the far infrared-γ-ray relation, 2021b, MNRAS, 505, 3295.
- Werhahn, Pfrommer, Girichidis, Cosmic rays and non-thermal emission in simulated galaxies. III. probing cosmic ray calorimetry with radio spectra and the FIR-radio correlation, 2021c, MNRAS, 508, 4072.
- Pfrommer, Werhahn, Pakmor, Girichidis, Simpson, Simulating radio synchrotron emission in star-forming galaxies: small-scale magnetic dynamo and the origin of the far infrared-radio correlation, 2022, submitted.
- Pfrommer, Pakmor, Simpson, Springel, Simulating gamma-ray emission in star-forming galaxies, 2017, ApJL, 847, L13.

Introduction Cosmic rays and gamma rays Magnetic fields and radio emission

Additional slides

Christoph Pfrommer Radio and gamma-ray emission in star-forming galaxies

イロト イポト イヨト イヨ

Galaxy formation Cosmic rays and gamma rays Magnetic fields and radio emission

Time evolution of kinetic and magnetic and energy

- magnetic and turbulent energy densities saturate in equipartition
- kinetic energy is dominated by rotational energy
- turbulent energy is approximately 1% of rotational energy

