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How universal is diffusive shock acceleration (DSA)?
What can galaxy clusters teach us about the process of shock acceleration?

Cosmological structure formation shock physics complementary to
interplanetary and SNR shocks:

probing unique regions of DSA parameter space:
→ Mach numbers M∼ 2 . . . 10 with ‘infinitely’ extended (Mpc)
and lasting (Gyr) shocks (observationally accessible @ z = 0)
→ plasma-β factors of β ∼ 102 . . . 105

origin and evolution of large scale magnetic fields and nature of
turbulent models in a ‘cleaner environment’ (1-phase medium)

consistent picture of non-thermal processes in galaxy clusters
(radio, soft/hard X-ray, γ-ray emission)
→ illuminating the process of structure formation
→ history of individual clusters: cluster archeology
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Shocks in galaxy clusters

1E 0657-56 (“Bullet cluster”)
(X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical:
NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing:
NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.)

Abell 3667
(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)
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Radiative simulations with GADGET – flowchart

CP, Enßlin, Springel (2008)
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Radiative simulations with cosmic ray (CR) physics

CP, Enßlin, Springel (2008)
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Diffusive shock acceleration – Fermi 1 mechanism (1)

Spectral index depends on the Mach number of the shock,
M = υshock/cs:

log p

strong shock

10 GeV

weak shock

keV

log f
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Diffusive shock acceleration – efficiency (2)

CR proton energy injection efficiency, ζinj = εCR/εdiss:
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Radiative cool core cluster simulation: gas density
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Mass weighted temperature
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Mach number distribution weighted by εdiss
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Mach number distribution weighted by εCR,inj
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CR pressure PCR
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Relative CR pressure PCR/Ptotal

10-2

10-1

100

-15 -10 -5 0 5 10 15-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15
x [ h-1 Mpc ]

-15

-10

-5

0

5

10

15

y 
[ 

h-1
 M

pc
 ]

-15 -10 -5 0 5 10 15-15

-10

-5

0

5

10

15

〈P
C

R
/
P

to
t
ρ

ga
s〉
/
〈ρ

ga
s〉

Christoph Pfrommer Particle Acceleration and Radiation from Galaxy Clusters



Cosmological simulations with cosmic rays
Gamma-ray emission from clusters

Diffuse radio emission in clusters

Motivation and observations
Cosmological galaxy cluster simulations
Non-thermal processes in clusters

Multi messenger approach for non-thermal processes
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Non-thermal emission from clusters
Exploring the memory of structure formation

primary, shock-accelerated CR electrons resemble current
accretion and merging shock waves

CR protons/hadronically produced CR electrons trace the time
integrated non-equilibrium activities of clusters that is modulated
by the recent dynamical activities

How can we read out this information about non-thermal populations?
→ new era of multi-frequency experiments, e.g.:

GMRT, LOFAR, MWA, LWA, SKA: interferometric array of radio
telescopes at low frequencies (ν ' (15− 240) MHz)

Simbol-X/NuSTAR: future hard X-ray satellites (E ' (1−100) keV)

Fermi γ-ray space telescope (E ' (0.1− 300) GeV)

Imaging air Čerenkov telescopes (E ' (0.1− 100) TeV)
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CR proton and γ-ray spectrum (Pinzke & CP 2009)
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Hadronic γ-ray emission, Eγ > 100 GeV
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Inverse Compton emission, EIC > 100 GeV
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Total γ-ray emission, Eγ > 100 GeV
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Correlation between thermal X-ray and γ-ray emission
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Photon index Γ - variations on large scales
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Universal CR spectrum in clusters

Fermi:        ~ 2.5

IACT:       ~ 2.2αp
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Normalized CR spectrum shows universal concave shape→ governed by
hierarchical structure formation and the implied distribution of Mach numbers
that a fluid element had to pass through in cosmic history (Pinzke & CP 2009).
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An analytic model for the cluster γ-ray emission
Comparison: simulation vs. analytic model, Mvir ' (1014, 1015) M�

   
10-32

10-31

10-30

10-29

10-28

10-27

λ γ
 (

r,
 E

γ =
 1

00
 M

eV
) 

[p
h 

cm
-3

 s
-1

 ]

 g72a  

 g914  

pion decay profile:

simulation

analytic model

0.01 0.10 1.00
 R / Rvir

-0.4
-0.2
0.0
0.2
0.4

∆λ
γ /

 λ
γ

Spatial γ-ray emission profile

       

10-13

10-12

10-11

10-10

10-9

 g72a  

 g914  

pion decay spectrum:

simulation

analytic model

10-2 100 102 104 106 108 1010

 Eγ [ GeV ]

-0.4
-0.2
0.0
0.2
0.4

F
γ
(>

E
γ
)E
γ

[G
eV

cm
2

s−
1
]

∆
F
γ
/
F
γ

Pion decay spectrum

Christoph Pfrommer Particle Acceleration and Radiation from Galaxy Clusters



Cosmological simulations with cosmic rays
Gamma-ray emission from clusters

Diffuse radio emission in clusters

Spectra and morphology
Predictions for Fermi and IACT’s
MAGIC observations of Perseus

Gamma-ray scaling relations
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Predicted cluster sample for Fermi and IACT’s

0 20 40 60 80 100

10-10

10-9

10-8

0 20 40 60 80 100

10-13

10-12

10-10

10-9

10-8

OPHIUCHU

COMA    

FORNAX  

A3627   

PERSEUS 

A3526   

A1060   

3C129   

AWM7    

M49     

A0754   

CRs with galaxies
CRs witout galaxies

F
γ
(E
γ
>

10
0

G
eV

)

F
γ
(E
γ
>

10
0

M
eV

)

extended HIFLUGCS cluster ID

black: optimistic model, including galactic ‘point sources’ that bias γ-ray flux
high; red: realistic model, excluding galactic ‘point sources’

Christoph Pfrommer Particle Acceleration and Radiation from Galaxy Clusters



Cosmological simulations with cosmic rays
Gamma-ray emission from clusters

Diffuse radio emission in clusters

Spectra and morphology
Predictions for Fermi and IACT’s
MAGIC observations of Perseus

Predicted cluster sample for Fermi – brightest objects
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MAGIC observations of Perseus
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Upper limit on the TeV γ-ray emission from Perseus
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Results from the Perseus observation by MAGIC

assuming f ∝ p−α with α = 2.1, PCR ∝ Pth:
ECR < 0.017Eth → most stringent constraint on CR pressure!

upper limits consistent with cosmological simulations:
Fupper limits(100GeV ) = 3.5 Fsim (optimistic model)

simulation modeling of pressure constraint yields
〈PCR〉/〈Pth〉 < 0.07 (0.14) for the core (entire cluster)

3 physical effects that resolve the apparent discrepancy:

concave curvature ‘hides’ CR pressure at GeV energies
galactic ‘point sources’ bias γ-ray flux high and pressure
limits low (partly physical)
relative CR pressure increases towards the outer parts
(adiabatic compression and softer equation of state of CRs)
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Minimum γ-ray flux in the hadronic model
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Predictions for Fermi and IACT’s
MAGIC observations of Perseus

Minimum γ-ray flux in the hadronic model: Fermi

Minimum γ-ray flux (Eγ > 100 MeV) for the Coma cluster:

CR spectral index 2.0 2.3 2.6 2.9
Fγ [10−10 ph cm−2s−1] 0.8 1.6 3.4 7.1

These limits can be made even tighter when considering energy
constraints, PB < Pgas/30 and B-fields derived from Faraday
rotation studies, B0 = 3 µG:
Fγ,COMA & (1.1 . . . 1.5)× 10−9γ cm−2s−1 . FFermi, 2yr

Non-detection by Fermi seriously challenges the hadronic
model.

Potential of measuring the CR acceleration efficiency for
diffusive shock acceleration.
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Minimum γ-ray flux in the hadronic model: IACT’s

Minimum γ-ray flux (Eγ > 100 GeV) for the Coma cluster:

CR spectral index 2.0 2.3 2.6 2.9
Fγ [10−14 ph cm−2s−1] 20.2 7.6 2.9 1.1

These limits can be made even tighter when considering energy
constraints, PB < Pgas/30, FRM B-fields with B0 = 3 µG, and
αp < 2.3 (caution: this assumes a power-law scaling):
Fγ,COMA & (5.3 . . . 7.6)× 10−13γ cm−2s−1

Potential of measuring the CR spectrum, the effective
acceleration efficiency for diffusive shock acceleration, and
relate this to the history of structure formation shock waves
(Mach number distribution).
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Cosmic web: Mach number
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Radio gischt (relics): primary CRe (1.4 GHz)
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Radio gischt: primary CRe (150 MHz)
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Radio gischt: primary CRe (15 MHz)
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Radio gischt: primary CRe (15 MHz), slower magnetic decline
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Radio gischt illuminates cosmic magnetic fields

1

3

2

-2 -1 0 1 2-2

-1

0

1

2

-2 -1 0 1 2
x [ h-1 Mpc ]

-2

-1

0

1

2

y 
[ h

-1
 M

pc
 ]

-2 -1 0 1 2-2

-1

0

1

2

〈M
ε̇

di
ss
〉/
〈ε̇

di
ss
〉

Structure formation shocks triggered

by a recent merger of a large galaxy

cluster.
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Diffuse cluster radio emission – an inverse problem
Exploring the magnetized cosmic web

Battaglia, CP, Sievers, Bond, Enßlin (2008):

By suitably combining the observables associated with diffuse
polarized radio emission at low frequencies (ν ∼ 150 MHz,
GMRT/LOFAR/MWA/LWA), we can probe

the strength and coherence scale of magnetic fields on scales of
galaxy clusters,

the process of diffusive shock acceleration of electrons,

the existence and properties of the WHIM,

the exploration of observables beyond the thermal cluster
emission which are sensitive to the dynamical state of the
cluster.
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Population of faint radio relics in merging clusters
Probing the large scale magnetic fields

Finding radio relics in 3D cluster simulations using a friends-of-friends finder
with an emission threshold→ relic luminosity function
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Relic luminosity function – theory
Relic luminosity function is very sensitive to large scale behavior of the
magnetic field and dynamical state of cluster:
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Rotation measure (RM)
RM maps and power spectra have the potential to infer the magnetic
pressure support and discriminate the nature of MHD turbulence in clusters:
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Conclusions

In contrast to the thermal plasma, the non-equilibrium distributions of
CRs preserve the information about their injection and transport
processes and provide thus a unique window of current and past
structure formation processes and diffusive shock acceleration!

1 Universal distribution of CR protons determined by maximum
shock acceleration efficiency ζmax and adiabatic transport:
mapping between the hadronic γ-ray emission and ζmax
→ cosmological simulations are indispensable for exploring this
(non-linear) map
→ spectral shape illuminates the process of structure formation

2 Primary radio (gischt) emission traces the magnetized cosmic
web; sensitive to electron acceleration efficiency
→ Faraday rotation on polarized Mpc-sized relics allows
determining the nature of the intra-cluster turbulence
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