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Puzzles in galaxy formation

Bright-end of luminosity function:

@ astrophysical solutions:
AGN/quasar feedback, . ..
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Puzzles in galaxy formation

Bright-end of luminosity function:

@ astrophysical solutions:
AGN/quasar feedback, . ..

Faint-end of luminosity function:
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Puzzles in galaxy formation

Puzzles in galaxy formation

Bright-end of luminosity function:

@ astrophysical solutions:
AGN/quasar feedback, . ..

Faint-end of luminosity function:

dN/d(log,, M) [1° Mpe=?]

) solutions:

mass (bt My)

@ astrophysical solutions: Somorviles1999

e preventing gas from falling into DM potential wells:
increasing entropy by reionization, blazar heating ...

e preventing gas from forming stars in galaxies:
suppress cooling (photoionization, low metallicities), . ..

@ pushing gas out of galaxies: /@
supernova/quasar feedback — galactic winds HITS
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Galactic winds and cosmic rays
Driving galactic winds Mass loss and star formation
Cosmic-ray heating

Galactic super wind in M82

NASA/ESA
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Galactic winds and cosmic rays
Driving galactic winds Mass loss and star formation
Cosmic-ray heating

Galactic wind in the Milky Way?

Diffuse X-ray emission in our galaxy

Snowden et al., 2007

“ Nuirs
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Galactic winds and cosmic rays
Driving galactic winds Mass loss and star formation
Cosmic-ray heating

Galactic wind in the Milky Way?

Fermi gamma-ray bubbles

Credit: NASA/DOE/Fermi LAT/D. Finkbeiner et al.
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Galactic winds and cosmic rays
Driving galactic winds Mass loss and star formation
Cosmic-ray heating

How to drive a wind?

@ standard picture: wind driven by thermal pressure

@ energy sources for winds: supernovae, AGN

@ problem with the standard picture: fast radiative cooling
@ alternative channels:

e radiation pressure on dust grains
e cosmic rays (CRs, relativistic protons with v,4 = 4/3)
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Galactic winds and cosmic rays
Driving galactic winds Mass loss and star formation
Cosmic-ray heating

Radio halos in edge-on disk galaxies

CRs and magnetic fields exist at the disk-halo interface — wind launching site?

NGC5775 6.2cm VLA Total lotensity + B-Vectos HPBW=16"
1 ! 1

why are CRs important for
wind formation?

033430 o

@ CR pressure drops less
quickly than thermal
pressure (P « p?)

@ CRs cool less efficiently
than thermal gas

DECLINATION (J2000)

@ most CR energy loss
goes into thermal
pressure

3030
145406 04 02 00 5358 56 54 52 50
RIGHT ASCENSION (12000)

Tiillmann+ (2000)
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Galactic winds and cosmic rays
Driving galactic winds Mass loss and star formation
Cosmic-ray heating

Interactions of CRs and magnetic fields

@ CRs scatter on magnetic fields — isotropization of CR momenta

@ CR Streaming lnstablllty' Kulsrud & Pearce 1969

o if Vor > Vwaves With respect to the gas,
CR excite Alfvén waves

e scattering off this wave field limits the
CRs’ bulk speed <« ¢

e wave damping: transfer of CR energy
and momentum to the thermal gas
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Galactic winds and cosmic rays
Driving galactic winds Mass loss and star formation
Cosmic-ray heating

Interactions of CRs and magnetic fields

@ CRs scatter on magnetic fields — isotropization of CR momenta

@ CR Streaming lnstablllty' Kulsrud & Pearce 1969

o if Vor > Vwaves With respect to the gas,
CR excite Alfvén waves

e scattering off this wave field limits the
CRs’ bulk speed <« ¢

e wave damping: transfer of CR energy
and momentum to the thermal gas

— CRs exert a pressure on the thermal gas by means of
scattering off Alfvén waves
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Galactic winds and cosmic rays
Driving galactic winds Mass loss and star formation
Cosmic-ray heating

Interstellar medium (ISM) simulations — flowchart

ISM observables: Physical processes in the ISM:

X-ray, Ho, HI, ... - -
emission
stellar - super-
spectra novae

loss processes
gain processes

observables N
C.P,, EnBlin, Springel (2008) populations HITS
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Galactic winds and cosmic rays
Driving galactic winds N loss and star formation

ISM simulations with cosmic ray physics

ISM observables: Physical processes in the ISM:

X-ray, Ha, HI, ...
emission

stellar
spectra

loss processes
gain processes

observables
C.P,, EnBlin, Springel (2008) populations HITS
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Galactic winds and cosmic rays
ar formation

)

v‘

loss processes
gain processes

observables )
C.P,, EnBlin, Springel (2008) populations HITS
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Galactic winds and cosmic rays
Driving galactic winds ar formation
ting

ISM simulations with extended cbsmic ray physics

ISM observables: Physical processes in the ISM:

X-ray, Ha, HI, ...
emission

stellar
spectra
radio
synchrotron
gamma-ray
emission
loss processes
gain processes

observables )
C.P,, EnBlin, Springel (2008) populations HITS
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Galactic winds and cosmic rays
Driving galactic winds Mass loss and star formation
Cosmic-ray heating

Simulation setup

Uhlig, C.P., Sharma, Nath, EnBlin, Springel, MNRAS 423, 2374 (2012) /4
Galactic winds driven by cosmic-ray streaming HITS

LOFAR's role alactic winds and AGN feedba



Galactic winds and cosmic rays
Driving galactic winds Mass loss and star formation
Cosmic-ray heating

reaming drives winds

CR advection-only
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Galactic winds and cosmic rays
Driving galactic winds Mass loss and star formation
Cosmic-ray heating

Gas mass loss within the virial radius

different scenarios: different galaxy masses:
1 1
08 ¢ 08
& &
e 06f L 06
= s
2 047 greaming (g =03) —— £ 04
= streaming (Zi =01 —— = Mraio = 1?3 hi M, —
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noCRs —— Mpgo=10"h"M
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t[ht Gy t[h™ Gyl

@ after initial phase (~ 2.5 Gyr), only winds driven by CR
streaming overcome the ram pressure of infalling gas and expel
gas from the halo

@ mass loss rate increases with CR injection efficiency (sn (left) /@
and towards smaller galaxy masses (right) HITS
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Driving galactic winds

Galactic winds and cosmic rays
Mass loss and star formation

Cosmic-ray heating

Mass loss and star formation histories

101 =1 Mg halo

star formation rate [M, yr']
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Galactic winds and cosmic rays
Driving galactic winds Mass loss and star formation
Cosmic-ray heating

Temperature structure

10° = Mg halo 10'° h=' Mg halo 10" A= Mg halo

t= 1507 Gyr

log 7 [X]

2 (W kpe]

~10 10 -10

0
z [h kpe]

@ halo temperatures scale as kT oc V2,4 ~ Vi

10% — 10" M, : transition of isotropic to bi-conical wind; in these
cones, CR wave heating overcomes radiative cooling

10'% — 10" M, : broadening of hot temperature structure due to
inability of CR streaming to drive a sustained wind; instead,
fountain flows drive turbulence, thereby heating larger regions /I

/" NHITS
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Galactic winds and cosmic rays
Driving galactic winds Mass loss and star formation
Cosmic-ray heating

Gas temperature: simulation (10'° M..) vs. observation

t = 4.9 Gyr, streaming M82
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Galactic winds and cosmic rays
Driving galactic winds Mass loss and star formation
Cosmic-ray heating

CR-driven winds: analytics versus simulations

Wind speeds and mass loading factors

10 : i |
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@ winds speeds increase with galaxy mass as Wying & Veire M;ég
until they cutoff around 10'" M, due to a fixed wind base height
(set by radiative physics)

@ mass loading factor n = M/SFR decreases with galaxy mass /‘@Hns
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Galactic winds and cosmic rays
Driving galactic winds Mass loss and star formation
Cosmic-ray heating

Conclusions on cosmic-ray driven winds in galaxies

@ galactic winds are naturally explained by CR streaming (energy
source, known plasma physics, observed scaling relations)

@ CR streaming heating can explain observed hot wind regions
above disks

@ substantial mass losses of low mass galaxies
— opportunity for understanding the physics at the faint end of
galaxy luminosity function

outlook: MHD simulations, better understanding of plasma physics,
cosmological settings, ...
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Observations of M87
Cosmic-ray heating
AGN feedback Conclusio

Messier 87 at radio wavelengths

v = 1.4 GHz (Owen+ 2000)

@ expectation: low frequencies sensitive to fossil electrons
(E ~ 100 MeV) — time-integrated activity of AGN feedback!

/ ]HITS
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Observations of M87
Cosmic-ray heating
AGN feedback Conclusions

Messier 87 at radio wavelengths

v = 1.4 GHz (Owen+ 2000) v = 140 MHz (LOFAR/de Gasperin+ 2012)

@ expectation: low frequencies sensitive to fossil electrons
(E ~ 100 MeV) — time-integrated activity of AGN feedback!

° halo confined to same region at all frequenciesandno
low-v spectral steepening — puzzle of “missing fossil electrons” )@

HITS
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Observations of M87
Cosmic-ray heating
AGN feedback Conclusions

Solutions to the “missing fossil electrons” problem

solutions:

@ special time: M87 turned on
~ 40 Myr ago after long
silence
< conflicts order unity duty
cycle inferred from stat. AGN
feedback studies (irzan+ 2012)
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Observations of M87
Cosmic-ray heating
AGN feedback Conclusions

Solutions to the “missing fossil electrons” problem

solutions:
° SpeCial time: M87 turned on m;\\ B:‘lOﬂG Coul(‘)mb 3
~ 40 Myr ago after long I smenaie
silence wE T

B= 204G ‘\‘ A

< conflicts order unity duty
cycle inferred from stat. AGN
feedback studies (irzan+ 2012)

@ Coulomb cooling removes i
fossil electrons
— efficient mixing of CR
electrons and protons with w w0 1‘3; w i

dense cluster gas

electron loss timescales= E/E [Myr]
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Observations of M87
Cosmic-ray heating
AGN feedback Conclusions

The gamma-ray picture of M87

@ high state is time variable
— jet emission

! ' ! Radio
1000 4
HST W]
Chandra &
@ low state: 4|

(1) Steady flux " HESS. hgh
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(3) spatial extension is under "
investigation (,)) Rieger & Aharonian (2012)

— confirming this triad would be smoking gun for first v-ray
signal from a galaxy cluster!
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Observations of M87
Cosmic-ray heating
AGN feedback Conclusions

Estimating the CR pressure in M87

@ X-ray data — nand T profiles o T
HST W
Chandra &
@ assume Xo = Per/ P “ .S
(self-consistency requirement) % u .

@ F, x [dV Pynenables to
estimate X, = 0.31 ‘ *
(allowing for Coulomb cooling
with Tcoul = 40 Myr)

10120 1ei22 lei24 1ei26 lei28

vIH7l

Rieger & Aharonian (2012)

— in agreement with non-thermal pressure constraints from
dynamical potential estimates (churazov+ 2010)
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Observations of M87
Cosmic-ray heating
AGN feedback Conclusions

Cosmic-ray heating vs. radiative cooling (1)

CR Alfvén-wave heating:

0P,
Her = —Va-VPy=—va (Xcrvr<Pth>Q + 5?)

@ Alfvén velocity v4 = B/+/4mp with
B ~ Bgq from LOFAR and p from X-ray data

@ X calibrated to « rays
@ Py, from X-ray data
@ pressure fluctuations § P, /d/ (e.g., due to weak shocks of M =~ 1.1)
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Cosmic-ray heating
AGN feedback Conclusions

Cosmic-ray heating vs. radiative cooling (1)

CR Alfvén-wave heating:

0P,
Her = —Va-VPy=—vy (Xcrvr<Pth>Q + 5?)

@ Alfvén velocity v4 = B/+/4mp with
B ~ Bgq from LOFAR and p from X-ray data
@ X calibrated to « rays
@ Py, from X-ray data
@ pressure fluctuations § P, /d/ (e.g., due to weak shocks of M =~ 1.1)

radiative cooling:
C'rad = nent/\cooI(Ta Z)

@ cooling function Agge With Z ~ Z, /@
all quantities determined from X-ray data HITS
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Observations of M87
Cosmic-ray heating
AGN feedback Conclusions

Cosmic-ray heating vs. radiative cooling (2)

Global thermal equilibrium on all scales in M87
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Observations of M87
Cosmic-ray heating
AGN feedback Conclusions

Local stability analysis (1)

T?Her
Tzcrad

heating

cooling

KT
@ isobaric perturbations to global thermal equilibrium

@ CRs are adiabatically trapped by perturbations /\@st
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Cosmic-ray heating
AGN feedback Conclusions

Local stability analysis (1)

T?Her
Tzcrad

heating

cooling

KT
@ isobaric perturbations to global thermal equilibrium

@ CRs are adiabatically trapped by perturbations /\@st
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Observations of M87
Cosmic-ray heating
AGN feedback Conclusions

Local stability analysis (1)

T?Her
Tzcrad

heating

stable FP cooling

KT
@ isobaric perturbations to global thermal equilibrium

@ CRs are adiabatically trapped by perturbations /\@st
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Observations of M87
Cosmic-ray heating
AGN feedback Conclusions

Local stability analysis (1)

T?Her
Tzcrad

separatrix

heating

&

"stable FP cooling

region of stability

KT
@ isobaric perturbations to global thermal equilibrium

@ CRs are adiabatically trapped by perturbations /\@st
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Observations of M87
Cosmic-ray heating
AGN feedback Conclusions

Local stability analysis (2)

Theory predicts observed temperature floor at kT ~ 1 keV

H Xcr=031 A

50 | ___ Xcr=0031 -
1

+ “islands of stability” B

A

\_

“ocean of instability”

instability criterion, arsinh)

L L M| L R | L L L -~
10 10 10 ¢
temperaturd [K]
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Observations of M87
Cosmic-ray heating
AGN feedback Conclusions

LOFAR’s role in understanding AGN feedback

@ improve statistics: observe other AGNs, which are interacting
with cooling cluster gas

@ improve magnetic field estimates: Faraday rotation studies (M87
and others)

o understanding prevailing core
dynamics and electron aging
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Observations of M87
Cosmic-ray heating
AGN feedback Conclusions

Conclusions on AGN feedback by cosmic-ray heating

@ LOFAR puzzle of “missing fossil electrons” solved by mixing with
dense cluster gas and Coulomb cooling

@ predicted v rays identified with low state of M87
— estimate CR-to-thermal pressure of X;; = 0.31

@ CR Alfvén wave heating balances radiative cooling on all scales

@ local thermal stability analysis predicts observed temperature
floor at KT ~ 1 keV

outlook: simulate steaming CRs coupled to MHD, cosmological
cluster simulations, . ..

)(JHITS
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Observations of M87
Cosmic-ray heating
AGN feedback Conclusions

Literature for the talk

Cosmic ray-driven winds in galaxies:

@ Unhlig, Pfrommer, Sharma, Nath, EnBlin, Springel, Galactic winds driven by
cosmic-ray streaming, MNRAS, 423, 2374, 2012.

AGN feedback by cosmic rays:

@ Pfrommer, Toward a comprehensive model for feedback by active galactic nuclei:
new insights from M87 observations by LOFAR, Fermi and H.E.S.S.,
arXiv:1303.5443.
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Additional slides
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Cosmic-ray heating
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Critical length scale of the instability

T HELLL L | T T T T T T TT)
C fap=10,Z=07Z, L]
L fap=10,Z =132, e
fup=03,Z2=07Z,
fap = 0.3,Z =132,

Agit =T e

100 ——

unstable wavelength e :
larger than system

thermally unstable

______ stabilized by CR streaming

critical instability length Agit [kpc]
N S

1 10 100 X
radius [kpc] NS
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Observations of M87
Cosmic-ray heating
AGN feedback Conclusions

CR streaming (1)

@ total CR velocity Vo = Vgas + Vst

@ CRs stream down their own pressure gradient relative to the gas:

VP

Vst = —AGs Wa
cr

@ CR transport equation — evolution equation for CR number and
energy density:

ONcy

ot -V [(Vgas + Vst) ncr]
0
;;r = (Vgas + Vst) - VPy — V- [(Vgas + Vst) (€cr + Pcr)}
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Observations of M87
Cosmic-ray heating
AGN feedback Conclusions

CR streaming (2)

@ Lagrangian time derivative

a_29
dt ~ ot

@ specific CR energy, &, and CR particle number, i,

+ Vgas - V

Ecr = Ecrp and Ner = Aerp

@ CR evolution equations:

dhcr ~
P = =V [Vstp el
dt
déer .
p = Vst - VPy — PoV:-Vgas — V- [Vs(péer + Por)]
dt —_———
energy loss term adiabatic changes energy change due to
(wave damping) due to converging/ CR streaming infout
diverging gas flow of a volume element /\<IHITS
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Observations of M87
Cosmic-ray heating
AGN feedback Conclusions

Test: Gadget-2 versus 1-d grid solver

Evolution of the specific CR energy due to streaming in a medium at rest

10 t=00Gyr 10 £=01Gyr 10 t=02G5
8 8 3
5 6 5 6 6
4 4 4
2 2
0 0 0
0 10 20 30 40 50 6 70 8 % 100 0 10 20 30 4 50 60 70 50 9% 100 0 10 20 30 40 50 60 70 80 90 100
x [pel x [kpel x [kpe]
10 t=05Gyr 10 £=10Gyr 10 t=15Gyr
8 8 3
5 6 6 5 6
o o o
4 4 4
2 2 2
o 0 0
0 10 20 30 4 50 6 70 8 % 100 0 10 20 30 4 50 60 70 80 9% 100 0O 10 20 30 40 50 6 70 8 9 100
x [kpel x [kpel x [kpe]
Uhlig+2012
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Observations of M87
Cosmic-ray heating
AGN feedback Conclusio

Resolution study

1 1
08 | 1 08
s s
L o6t L os
= S
g o4y S o4
02 (DM/Gas) = (4x10° / 3x10%) —— | 02
- (DM/Gas) = (2x10° / 1x10°) —— - £=0.001
0 (DM/Gas) = (2x10* / 1x10%) 0 £=0004 ——
o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7
[ Gyr] [t Gyr)

@ our results winds driven by CR streaming are converged with
respect to particle resolution (left) and time step of the explicit
streaming solver (right)
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