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Physics of blazar heating TeV emission from blazars

TeV gamma-ray astronomy
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Physics of blazar heating TeV emission from blazars
Propagation of TeV photons
Plasma instabilities

The TeV gamma-ray sky

There are several classes of TeV sources:
@ Galactic - pulsars, BH binaries, supernova remnants

@ Extragalactic - mostly blazars, two starburst galaxies

VHEy-ray sources
VHE y-ray Sky Map s50° §
(E 100 GeV)

W Flst Specium Radio Quasar
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Pukar Wind Nebula
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Physics of blazar heating TeV emission from blazars

Unified model of active galactic nuclei

. . Radio koud
narrow line region €S0y
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relativistic jet
BLRG

central SMBH
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Physics of blazar heating TeV emission from blazars
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The blazar sequence
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Physics of blazar heating TeV emission from blazars
Propagation of TeV photons
Plasma instabilities

Propagation of TeV photons

@ 1 TeV photons can pair produce with 1 eV photons:
Y+y— et +e”

@ mean free path for this depends on the density of 1 eV photons:
— typically ~ 100 Mpc
— pairs produced with energy of 0.5 TeV (y = 10°)

@ these pairs inverse Compton scatter off the CMB photons
— mean free path is ~ 30 kpc
— producing gamma-rays of ~ 1 GeV

E ~ PYZECMB ~1GeV

@ each TeV point source should also be a GeV point source /@
HITS
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Physics of blazar heating TeV emission from blazars
Propagation of TeV photons
Plasma instabilities

What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray
halo — not seen!
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Physics of blazar heating TeV emission from blazars
Propagation of TeV photons
Plasma instabilities

Missing plasma physics?

How do beams of e* /e~ propagate through the IGM?
@ plasma processes are important
@ interpenetrating beams of charged particles are unstable
@ consider the two-stream instability:

P
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@ one frequency (timescale) and one length in the problem:
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Physics of blazar heating TeV emission from blazars
Propagation of TeV photons
Plasma instabilities

Two-stream instability: mechanism

wave-like perturbation with k|| vyeam, longitudinal charge oscillations
in background plasma (Langmuir wave):

@ initially homogeneous beam-e~:
attractive (repulsive) force by potential maxima (minima)

@ e~ attain lowest velocity in potential minima — bunching up
@ et attain lowest velocity in potential maxima — bunching up

>
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Physics of blazar heating TeV emission from blazars
Propagation of TeV photons
Plasma instabilities

Two-stream instability: mechanism

wave-like perturbation with k|| vyeam, longitudinal charge oscillations
in background plasma (Langmuir wave):

@ beam-et /e~ couple in phase with the background perturbation:
enhances background potential

@ stronger forces on beam-e* /e~ — positive feedback
@ exponential wave-growth — instability

Do

e, e”
et et
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e” e” HITS
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Physics of blazar heating TeV emission from blazars
Propagation of TeV photons
Plasma instabilities

Two-stream instability: energy transfer

@ energy is transferred to the plasma wave from particles with
V 2 Vphase — growing modes

@ energy is transferred from the plasma wave to particles with —
V < Vphase — damped modes /\QH.TS
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Physics of blazar heating TeV emission from blaza
Propagation of TeV photons
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Oblique instability

k oblique to vpeam: real word perturbations don’t choose “easy”
alignment = ) all orientations

Beam flow

k”clmp

Beam

Bret (2009), Bret+ (2010)




Physics of blazar heating TeV emission from blazars
Propagation of TeV photons
Plasma instabilities

Beam physics — growth rates

excluded for collective @ consider a Iight beam
plasma phenomena 7 . h
104 108 108 107 penetratlng into
relatively dense

E T \HHHb\ HHH‘ \\HHH‘ \\HH%
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Broderick, Chang, C.P. (2011) /‘qms
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Physics of blazar heating TeV emission from blazars
Propagation of TeV photons
Plasma instabilities

Beam physics — growth rates

@ non-linear evolution of these instabilities at these density
contrasts is not known

@ expectation from PIC simulations suggest substantial
isotropization of the beam

@ plasma instabilities dissipate the beam’s energy, no energy left
over for inverse Compton scattering off the CMB
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Physics of blazar heating TeV emission from blazars
Propagation of TeV photons
Plasma instabilities

Summary: Heating by TeV blazars

@ blazars emit TeV gamma-rays

@ production of e™ /e~ -pairs with extragalactic-background-light
photons

@ energy of et /e~ -pairs is dissipated locally by plasma
instabilities — heating the IGM

@ heating is almost independent of density for z < 3.5
(underdense regions receive more energy per unit mass)
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM

The Lyman-« forest

Outline

Q The intergalactic medium
@ Properties of blazar heating
@ Thermal history of the IGM
@ The Lyman-« forest
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

TeV blazar luminosity density

@ collect luminosity of all 23

TeV blazars with good
spectral measurements
T @ account for the selection
% effects
g @ TeV blazar luminosity
Zasl density is a scaled
R ] iy N version (~ 0.2%) of that
R S M O N of quasars!
34 7 TE . E b
I T o ilatd ] @ assume that they trace
N S each other for all z
38 40 42 44 46 48
log,4(L/erg st)
Broderick, Chang, C.P. (2011) /<IHITS
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Evolution of the heating rates

HI,Hel-/Hell-reionization
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Blazar heating vs. photoheating

@ total power from AGN/stars vastly exceeds the TeV power of blazars
@ Tieu ~ 10* K (1 eV) at mean density (z ~ 2)

T —9
eh=—— ~ 10
" me?

@ radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)
Erad = 1 Qon ~ 0.1 x 1074 ~ 107°
@ fraction of the energy energetic enough to ionize H 1is ~ 0.1:
e ~ 0.16g ~107%  — KT ~keV

@ photoheating efficiency 7pn ~ 107°  — KT ~ nonh cuy mpC? ~ eV

(limitted by the abundance of H I/He 1l due to the small recombination rate)

.

@ blazar heating efficiency non ~ 107°  — KT ~ 1jon £rag MpC* ~ 1OeV/.-<I

(limited by the total power of TeV sources) HITS
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Properties of blazar heating

The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Thermal history of the IGM
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Chang, Broderick, C.P. (2011)
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Evolution of the temperature-density relation
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Evolution of the temperature-density relation

no blazar heating blazar heating
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Chang, Broderick, C.P. (2011)
@ blazars and extragalactic background light are uniform
— blazar heating independent of density
— causes inverted temperature-density relation, T o 1/

@ blazars completely change the thermal history of the diffuse )@
IGM and late-time structure formation HiTs
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Simulations with blazar heating

Puchwein, C.P., Springel, Broderick, Chang (2011):
@ L = 15h~"Mpc boxes with 2 x 3843 particles
@ one reference run without blazar heating

@ three with blazar heating at different levels of efficiency (to
account for uncertainties in the expected blazar-heating rate)

@ used an up-to-date model of the UV background
(Faucher-Giguere et al. 2009)
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM

Temperature-density relation

no blazar heating intermediate blazar heating

log;o(7/K)
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Puchwein, C.P., Springel, Broderick, Chang (2011) )(J
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Ly-a spectra
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Ly-a flux PDFs and power spectra
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Voigt profile decomposition
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@ decomposing Lyman-« forest into individual Voigt profiles

@ allows studying the thermal broadening of absorption lines
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Voigt profile decomposition — line width distribution
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Properties of blazar heating
The intergalactic medium Thermal history of the IGM
The Lyman-« forest

Lyman-« forest in a blazar heated Universe

impressive improvement in modelling the Lyman-« forest is a direct
consequence of the peculiar properties of blazar heating:

@ heating rate independent of IGM density — naturally produces
the inverted T—p relation that Lyman-« forest data demand

@ recent and continuous nature of the heating needed to match
the redshift evolutions of all Lyman-« forest statistics

@ magnitude of the heating rate required by Lyman-« forest data
~ the total energy output of TeV blazars (or equivalently ~ 0.2%
of that of quasars)
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Entropy evolution
Bimodality of galaxy clusters
Structure formation Formation of dwarf galaxies

Outline

e Structure formation
@ Entropy evolution
@ Bimodality of galaxy clusters
@ Formation of dwarf galaxies
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Entropy evolution
Bimodality of galaxy clusters
Structure formation Formation of dwarf galaxies

Entropy evolution

temperature evolution entropy evolution
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C.P, Chang, Broderick (2011)
@ evolution of the entropy, K. = angz/s, at mean density

@ blazar heating substantially increases the entropy floor (z < 2) /@
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Entropy evolution
Bimodality of g
Structure formation Formation of

0.1 1 10 0.1 1 10
146 146

C.P.,, Chang, Broderick (2011)

blazar heating substantially increases the entropy in voids

scatter is also increased — larger stochasticity of structure

formation X
HITS
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Entropy evolution
Bimodality of galaxy clusters
Structure formation Formation of dwarf galaxies

Blazar heating: AGN feedback vs. pre-heating

Blazar heating is an amalgam of pre-heating and AGN feedback:

@ blazar heating is not localized (# AGN feedback)
— may change initial conditions for forming groups (but provides
no stability for cool cores, CCs)

@ blazar heating generates time-dependent entropy floor
(# pre-heating)
— may solve the classical problems of pre-heating (z ~ 3):

e provides a physical mechanism
e does not starve galaxy formation for z < 3
e early forming groups can cool and develop observed low-K,

cores
/<IHITS
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Entropy evolution
Bimodality of galaxy clusters
Structure formation Formation of dwarf galaxies

Mass accretion history of groups/clusters

mass accretion history mass accretion rates
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C.P, Chang, Broderick (2011)

@ peak entropy injection from blazar heating (z ~ 1) matches
formation time of groups

@ early forming groups are unaffected and develop cool cores .
@ late forming groups may have an elevated entropy core /@Hns
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Entropy evolution
Bimodality of galaxy clusters
Structure formation Formation of dwarf galaxies

Entropy profiles: effect of blazar heating

varying formation time varying cluster mass
1000
M, =3% 105 Mg My =1x10%Mg, z=05
My, =3x10%M,, 2=05
My =1x10%Mg, 2=05
E E 100F B
3 g
N2 N2
101 optimistic blazar 10+ optimistic blazar
0.01 0.10 1.00 0.01 0.10 1.00
' Rom r/ Ry

C.P.,, Chang, Broderick (2011)
If significant fraction of intra-group medium collapses from IGM:
@ z-dependent excess entropy in cores (no cooling) -
@ largest effect for late forming, small objects /\qms

istoph Pfrommer Blazar heating



Entropy evolution
Bimodality of galaxy clusters
Structure formation Formation of dwarf galaxies

Scenario for the bimodality of cluster core entropies?

@ entropy core, K. o, immediately after formation is set by the
z-dependent blazar heating

@ only late forming groups (z < 1) are directly affected by blazar
(pre-)heating

@ if the cooling time, f;00, is shorter than the time period to the
successive merger, fmerger, the group will radiate away the
elevated core entropy and evolve into a CC

@ if foool > tmerger, Merger shocks can gravitationally reprocess the
entropy cores and amplify them — potentially those forming
clusters evolve into non-cool core (NCC) systems

HITS
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Entropy evolution
Bimodality of galaxy clusters

Structure formation Formation of dwarf galaxies

Gravitational reprocessing of entropy floors

Borgani+ (2005)

T '/ ] @ larger Kq o of a merging
s 1000 ¢ . // I3 cluster facilitates shock
S o —— ] heating — increase of K o
E e E ’
% ; cH E over entropy floor
L -~ 5100 |
VF———cuesigo Ot 3 g entropy floor of 100 keV cm?
o o at z = 3 in non-radiative
gl f‘f‘; simulation:
AT S — =T ] net entropy amplification
R 7 E factor ~ 3-5 for clusters and
? = / Group-3 groups (Borgani+ 2005)
= L PR | Lon il
0.01 0.1 1 @ expect median of
R/Rye

Ke.o ~ 150keV cm?;
maximum
Ks0 ~ 600 keV cm?
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Entropy evolution
Bimodality of galaxy clusters
Structure formation Formation of dwarf galaxies

Bimodality of cluster core entropies

30

ﬂfﬁﬁ

N R AR LS AN LN A L L LA AL LA
N I TP T I A P T AT AT TP P

K, [keV cm’]
Cavagnolo+ (2009)

@ Chandra observations match blazar heating expectations! —
@ need hydrodynamic simulations to confirm this scenario /@Hns
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Entropy evolution
Bimodality of galaxy clusters
Structure formation Formation of dwarf galaxies

Jeans mass

@ on small enough scales, the thermal pressure can oppose
gravitational collapse of the gas

@ characteristic length scale below which objects will not form

@ Jeans wavenumber and mass is obtained by balancing the
sound crossing and free-fall timescales

kia) = ﬁ\MwGﬁ(a)
47 _ ora\® 452 cd(a)
570 (o) =5 s

@ blazar heating increases the IGM temperature by ~ 10:

3 3/2
M, prazar (Cs,blazar> _ (Tblazar> / > 30
MJ,photo Cs,photo Tphoto ~

M,(a)
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Entropy evolution
Bimodality of galaxy clusters
Structure formation Formation of dwarf galaxies

Filtering mass — dwarf formation

blazar heating _
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Entropy evolution
Bimodality of galaxy clusters
Structure formation Formation of dwarf galaxies

Peebles’ void phenomenon explained?

mean density void, 1+ =0.5
102 1#8=12,,=10 o 102 1+3=05,74,,=10 -
~ 1091 S 10°F
s s
= =
= linear theory = linear theory
Z 0 ___ nonineartheory 10 _ non-linear theory
—._._.. optimistic blazar —._._.. optimistic blazar
— - -~ standard blazar ____ standard blazar
100 __ only photoheating | 10° — only photoheating |
s s —
5 10¢ | 3108 Pt E
[ S L 3 | 3
10 1 10 1
1+z 1+z

C.P.,, Chang, Broderick (2011)

@ blazar heating efficiently suppresses the formation of void dwarfs
within existing DM halos of masses < 3 x 10" M, (z = 0)

@ reconciling the number of void dwarfs in simulations and the /@
paucity of those in observations HITS

istoph Pfrommer Blazar heating



Entropy evolution
Bimodality of galaxy clusters
Structure formation Formation of dwarf galaxies

“Missing satellite” problem in the Milky Way

satellite formation time satellite luminosity function
100 g—— — T T T T T T 3
: G1 K08 ]
i z =11 ]
= 10 T —E
% ....... E
1E =1 E
o H
A i
0 2 100 f } ———
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not observed! 2 F v 3
_____ 7= 05 i |
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M, [mag]

Maccio+ (2010)

@ blazar heating suppresses late satellite formation, reconciling /@
low observed dwarf abundances with CDM simulations HITS
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Entropy evolution
Bimodality of galaxy clusters
Structure formation Formation of dwarf galaxies

Conclusions on blazar heating

@ novel mechanism; dramatically alters thermal history of the IGM:

e uniform and z-dependent preheating
e rate independent of density — inverted T—p relation
e consistent picture of Lyman-« forest

@ significantly modifies late-time structure formation:

e group/cluster bimodality of core entropy values

e may suppress Sunyaev-Zel'dovich power spectrum

e dwarf formation: “missing satellite” problem, void
phenomenon

@ explains puzzles in high-energy astrophysics:

e TeV blazars can evolve like quasars
e extragalactic gamma-ray background at E > 10 GeV .
e invalidates intergalactic B-constraints from blazar spectra /@

HITS
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Entropy evolution
Bimodality of galaxy clusters
Structure formation Formation of dwarf galaxies

How efficient is heating by AGN feedback?

" Bl 59keY) @ cavity enthalpy
10'- il
L -4+ E, (KT, = 20keV)) Ecay = 4 PViot
= 4
g 100 Sas E 1 @ insome cases
2 E, ss00(KTx = 0.7 keV)
3 R
> B 4
% +—*+ Ecav Z Ebind(RZSOO)
i 10°- + i _
+; 1 @ cavity energy only
; + cool cores non-cool cores COUpleS Weakly into
T ‘ ] ICM, but prevents
1 10 100 cooling catastrophe
Keo [keV cm?]

C.P,, Chang, Broderick (2011)

@ on a buoyancy timescale, no AGN outburst transforms a CC »
to a non-cool core (NCC) cluster! /@st
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