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The TeV gamma-ray sky
There are several classes of TeV sources:

Galactic - pulsars, BH binaries, supernova remnants

Extragalactic - mostly blazars, two starburst galaxies
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Unified model of active galactic nuclei

broad line region

dusty torus

relativistic jetnarrow line region

central SMBH
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The blazar sequence

Ghisellini (2011)
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Propagation of TeV photons

1 TeV photons can pair produce with 1 eV photons:

γ + γ → e+ + e−

mean free path for this depends on the density of 1 eV photons:
→ typically ∼ 100 Mpc
→ pairs produced with energy of 0.5 TeV (γ = 106)

these pairs inverse Compton scatter off the CMB photons
→ mean free path is ∼ 30 kpc
→ producing gamma-rays of ∼ 1 GeV

E ∼ γ2ECMB ∼ 1 GeV

each TeV point source should also be a GeV point source
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What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray
halo – not seen!

expected cascade

Fermi
constraints

TeV spectra

TeV detections

Neronov & Vovk (2010)

emission
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Missing plasma physics?
How do beams of e+/e− propagate through the IGM?

plasma processes are important

interpenetrating beams of charged particles are unstable

consider the two-stream instability:

one frequency (timescale) and one length in the problem:

ωp

γ
=

√
4πe2ne

γ2me
λp =

γc
ωp
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Two-stream instability: mechanism
wave-like perturbation with k ||vbeam, longitudinal charge oscillations
in background plasma (Langmuir wave):

initially homogeneous beam-e−:
attractive (repulsive) force by potential maxima (minima)

e− attain lowest velocity in potential minima → bunching up

e+ attain lowest velocity in potential maxima → bunching up

p

Φ

e e− −

p
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Two-stream instability: mechanism
wave-like perturbation with k ||vbeam, longitudinal charge oscillations
in background plasma (Langmuir wave):

beam-e+/e− couple in phase with the background perturbation:
enhances background potential

stronger forces on beam-e+/e− → positive feedback

exponential wave-growth → instability

p

Φ

e−

e+

e−

+e

e e− −

p
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Two-stream instability: energy transfer

energy is transferred to the plasma wave from particles with
v & vphase → growing modes

energy is transferred from the plasma wave to particles with
v . vphase → damped modes
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Oblique instability

k oblique to vbeam: real word perturbations don’t choose “easy”
alignment =

∑
all orientations

Bret (2009), Bret+ (2010)

Christoph Pfrommer Blazar heating



Physics of blazar heating
The intergalactic medium

Structure formation

TeV emission from blazars
Propagation of TeV photons
Plasma instabilities

Beam physics – growth rates

IC

ob
liq

ue

plasma phenomena
excluded for collective

two−stream

Weibel

Broderick, Chang, C.P. (2011)

consider a light beam
penetrating into
relatively dense
plasma

maximum growth rate

∼ 0.4 γ
nbeam

nIGM
ωp

oblique instability
beats IC by two orders
of magnitude
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Beam physics – growth rates

non-linear evolution of these instabilities at these density
contrasts is not known

expectation from PIC simulations suggest substantial
isotropization of the beam

plasma instabilities dissipate the beam’s energy, no energy left
over for inverse Compton scattering off the CMB

Christoph Pfrommer Blazar heating



Physics of blazar heating
The intergalactic medium

Structure formation

TeV emission from blazars
Propagation of TeV photons
Plasma instabilities

Summary: Heating by TeV blazars

blazars emit TeV gamma-rays

production of e+/e−-pairs with extragalactic-background-light
photons

energy of e+/e−-pairs is dissipated locally by plasma
instabilities → heating the IGM

heating is almost independent of density for z < 3.5
(underdense regions receive more energy per unit mass)
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TeV blazar luminosity density

Broderick, Chang, C.P. (2011)

collect luminosity of all 23
TeV blazars with good
spectral measurements

account for the selection
effects

TeV blazar luminosity
density is a scaled
version (∼ 0.2%) of that
of quasars!

assume that they trace
each other for all z
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Evolution of the heating rates
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Blazar heating vs. photoheating

total power from AGN/stars vastly exceeds the TeV power of blazars

TIGM ∼ 104 K (1 eV) at mean density (z ∼ 2)

εth =
kT

mpc2 ∼ 10−9

radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)

εrad = η Ωbh ∼ 0.1× 10−4 ∼ 10−5

fraction of the energy energetic enough to ionize H I is ∼ 0.1:

εUV ∼ 0.1εrad ∼ 10−6 → kT ∼ keV

photoheating efficiency ηph ∼ 10−3 → kT ∼ ηph εUV mpc2 ∼ eV
(limitted by the abundance of H I/He II due to the small recombination rate)

blazar heating efficiency ηbh ∼ 10−3 → kT ∼ ηbh εrad mpc2 ∼ 10 eV
(limited by the total power of TeV sources)
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Thermal history of the IGM
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Evolution of the temperature-density relation

no blazar heating blazar heating

Chang, Broderick, C.P. (2011)

blazars and extragalactic background light are uniform
→ blazar heating independent of density
→ causes inverted temperature-density relation, T ∝ 1/δ

blazars completely change the thermal history of the diffuse
IGM and late-time structure formation
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Simulations with blazar heating

Puchwein, C.P., Springel, Broderick, Chang (2011):

L = 15h−1Mpc boxes with 2× 3843 particles

one reference run without blazar heating

three with blazar heating at different levels of efficiency (to
account for uncertainties in the expected blazar-heating rate)

used an up-to-date model of the UV background
(Faucher-Giguère et al. 2009)
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Temperature-density relation
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Ly-α spectra
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Ly-α flux PDFs and power spectra
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Voigt profile decomposition

decomposing Lyman-α forest into individual Voigt profiles

allows studying the thermal broadening of absorption lines

Christoph Pfrommer Blazar heating



Physics of blazar heating
The intergalactic medium

Structure formation

Properties of blazar heating
Thermal history of the IGM
The Lyman-α forest

Voigt profile decomposition – line width distribution
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Lyman-α forest in a blazar heated Universe

impressive improvement in modelling the Lyman-α forest is a direct
consequence of the peculiar properties of blazar heating:

heating rate independent of IGM density → naturally produces
the inverted T–ρ relation that Lyman-α forest data demand

recent and continuous nature of the heating needed to match
the redshift evolutions of all Lyman-α forest statistics

magnitude of the heating rate required by Lyman-α forest data
∼ the total energy output of TeV blazars (or equivalently ∼ 0.2%
of that of quasars)
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Entropy evolution

temperature evolution
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evolution of the entropy, Ke = kTn−2/3
e , at mean density

blazar heating substantially increases the entropy floor (z . 2)
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Evolution of the entropy-density relation

no blazar heating blazar heating

C.P., Chang, Broderick (2011)

blazar heating substantially increases the entropy in voids

scatter is also increased → larger stochasticity of structure
formation
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Blazar heating: AGN feedback vs. pre-heating

Blazar heating is an amalgam of pre-heating and AGN feedback:

blazar heating is not localized (6= AGN feedback)
→ may change initial conditions for forming groups (but provides
no stability for cool cores, CCs)

blazar heating generates time-dependent entropy floor
(6= pre-heating)
→ may solve the classical problems of pre-heating (z ∼ 3):

provides a physical mechanism
does not starve galaxy formation for z . 3
early forming groups can cool and develop observed low-Ke
cores
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Mass accretion history of groups/clusters

mass accretion history
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C.P., Chang, Broderick (2011)

peak entropy injection from blazar heating (z ∼ 1) matches
formation time of groups

early forming groups are unaffected and develop cool cores

late forming groups may have an elevated entropy core
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Entropy profiles: effect of blazar heating

varying formation time
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C.P., Chang, Broderick (2011)

If significant fraction of intra-group medium collapses from IGM:

z-dependent excess entropy in cores (no cooling)

largest effect for late forming, small objects
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Scenario for the bimodality of cluster core entropies?

entropy core, Ke,0, immediately after formation is set by the
z-dependent blazar heating

only late forming groups (z . 1) are directly affected by blazar
(pre-)heating

if the cooling time, tcool, is shorter than the time period to the
successive merger, tmerger, the group will radiate away the
elevated core entropy and evolve into a CC

if tcool > tmerger, merger shocks can gravitationally reprocess the
entropy cores and amplify them → potentially those forming
clusters evolve into non-cool core (NCC) systems
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Gravitational reprocessing of entropy floors

Borgani+ (2005)

larger Ke,0 of a merging
cluster facilitates shock
heating → increase of Ke,0
over entropy floor

entropy floor of 100 keV cm2

at z = 3 in non-radiative
simulation:
net entropy amplification
factor ∼ 3–5 for clusters and
groups (Borgani+ 2005)

expect median of
Ke,0 ∼ 150 keV cm2;
maximum
Ke,0 ∼ 600 keV cm2
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Bimodality of cluster core entropies

Cavagnolo+ (2009)

Chandra observations match blazar heating expectations!

need hydrodynamic simulations to confirm this scenario
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Jeans mass

on small enough scales, the thermal pressure can oppose
gravitational collapse of the gas

characteristic length scale below which objects will not form

Jeans wavenumber and mass is obtained by balancing the
sound crossing and free-fall timescales

kJ(a) ≡ a
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√
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3
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blazar heating increases the IGM temperature by ∼ 10:
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Filtering mass – dwarf formation
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Peebles’ void phenomenon explained?

mean density
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C.P., Chang, Broderick (2011)

blazar heating efficiently suppresses the formation of void dwarfs
within existing DM halos of masses < 3× 1011 M� (z = 0)

reconciling the number of void dwarfs in simulations and the
paucity of those in observations
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“Missing satellite” problem in the Milky Way

satellite formation time

not observed!
late forming satellites (< 10 Gyr)

Maccio & Fontanot (2010)

satellite luminosity function

Maccio+ (2010)

blazar heating suppresses late satellite formation, reconciling
low observed dwarf abundances with CDM simulations
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Conclusions on blazar heating

novel mechanism; dramatically alters thermal history of the IGM:

uniform and z-dependent preheating
rate independent of density → inverted T–ρ relation
consistent picture of Lyman-α forest

significantly modifies late-time structure formation:

group/cluster bimodality of core entropy values
may suppress Sunyaev-Zel’dovich power spectrum
dwarf formation: “missing satellite” problem, void
phenomenon

explains puzzles in high-energy astrophysics:

TeV blazars can evolve like quasars
extragalactic gamma-ray background at E & 10 GeV
invalidates intergalactic B-constraints from blazar spectra
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How efficient is heating by AGN feedback?

1 10 100

10-2

100

102

104

Eb, 2500(kTX = 0.7 keV)

Eb, 2500(kTX = 1.2 keV)

Eb, 2500(kTX = 2.0 keV)

Eb, 2500(kTX = 3.5 keV)

Eb, 2500(kTX = 5.9 keV)

cool cores non-cool cores

E
ca

v
=

4P
V

to
t
[1

058
er

g]

Ke,0 [keV cm2]

C.P., Chang, Broderick (2011)

cavity enthalpy

Ecav = 4 PVtot

in some cases

Ecav & Ebind(R2500)

cavity energy only
couples weakly into
ICM, but prevents
cooling catastrophe

on a buoyancy timescale, no AGN outburst transforms a CC
to a non-cool core (NCC) cluster!
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