
Magnetic dynamo in galaxies and the origin of
the far-infrared–radio correlation

Christoph Pfrommer1

in collaboration with

M. Werhahn2, R. Pakmor2, P. Girichidis3, C. Simpson4, E. Puchwein1

1AIP Potsdam, 2MPA Garching, 3U of Heidelberg, 4Argonne LCF

Nordita program IMAGINE: Towards a Comprehensive Model of the
Galactic Magnetic Field, Stockholm, Apr, 2023







Galactic magnetic dynamos
Far-infrared–radio correlation

Magnetic growth and saturation
Identifying main growth phases
Evidence for small-scale dynamo

Origin and growth of magnetic fields

The general picture:
Origin. Magnetic fields are generated by
1. electric currents sourced by a phase
transition in the early universe or 2. by
the Biermann battery

Growth. A small-scale (fluctuating)
dynamo is an MHD process, in which
the kinetic (turbulent) energy is
converted into magnetic energy: the
mechanism relies on magnetic fields to
become stronger when the field lines are
stretched

Saturation. Field growth stops at a
sizeable fraction of the turbulent energy
when magnetic forces become strong
enough to resist the stretching and
folding motions
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MHD-CR galaxy simulations

CP, Werhahn, Pakmor, Girichidis, Simpson (2022)
Simulating radio synchrotron emission in star-forming galaxies: small-scale
magnetic dynamo and the origin of the far-infrared–radio correlation

MHD + cosmic ray advection + diffusion:
{

1010, 1011, 3 × 1011, 1012} M⊙
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Time evolution of SFR and energy densities
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CP+ (2022)

cosmic ray (CR) pressure feedback suppresses SFR more in
smaller galaxies

energy budget in disks is dominated by CR pressure

magnetic growth faster in Milky Way galaxies than in dwarfs
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Time evolution of CR and magnetic energy densities
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CRs diffuse out of galaxies ⇒ lowers εcr in disk

CR diffusion slows magnetic field growth ⇒ lowers εB

both effects decrease synchrotron emissivity

magnetic field reaches saturation after initial growth phase

⇒ study saturation stage!
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Comparing turbulent and magnetic energy densities
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magnetic energy saturates at the turbulent energy,
εB ∼ εturb = ρδv2/2 (averaged over the disk)

saturation level similar for CR models with diffusion (left) and
without (right)

rotation dominates: εrot = ρv2
φ/2 ∼ 100εturb
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Identifying different growth phases
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CP+ (2022)

1st phase: adiabatic growth with B ∝ ρ2/3 (isotropic collapse)

2nd phase: additional growth at high density ρ with small
dynamical times tdyn ∼ (Gρ)−1/2

3rd phase: growth migrates to lower ρ on larger scales ∝ ρ−1/3
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Studying growth rate with numerical resolution
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CP+ (2022)

faster magnetic growth in higher resolution simulations and
larger halos, numerical convergence for N ≳ 106

1st phase: adiabatic growth (independent of resolution)

2nd phase: small-scale dynamo with resolution-dep. growth rate
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Exponential field growth in kinematic regime
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CP+ (2022)

corrugated accretion shock dissipates kinetic energy from
gravitational infall, injects vorticity that decays into turbulence,
and drives a small-scale dynamo
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Dynamo saturation on small scales while λB increases
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CP+ (2022)

supersonic velocity shear between the rotationally supported
cool disk and hotter CGM: excitation of Kelvin-Helmholtz body
modes that interact and drive a small-scale dynamo
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Kinetic and magnetic power spectra
Fluctuating small-scale dynamo in different analysis regions
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EB(k) superposition of form factor and turbulent spectrum

pure turbulent spectrum outside steep central B profile
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Non-thermal emission in star-forming galaxies
previous theoretical modeling:

one-zone steady-state models
(Lacki+ 2010, 2011, Yoast-Hull+ 2013)

1D transport models (Heesen+ 2016)

static Milky Way models
(Strong & Moskalenko 1998, Evoli+ 2008, Kissmann 2014)

our theoretical modeling:

run MHD-CR simulations of galaxies at
different halos masses and SFRs
model steady-state CRs: protons,
primary and secondary electrons
model all radiative processes from radio
to gamma rays
gamma rays: understand pion decay
and leptonic inverse Compton emission
radio: understand magnetic dynamo,
primary and secondary electrons

Bell (2003)

Ajello+ (2020)
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Steady-state cosmic ray spectra
solve the steady-state equation in every cell for each CR population:
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protons: Coulomb, hadronic and escape losses (re-normalized to εcr)

electrons: Coulomb, bremsstr., IC, synchrotron and escape losses

primaries (re-normalized using Kep = 0.02)
secondaries

steady state assumption is fulfilled in disk and in regions dominating the
non-thermal emission but not at low densities, at SNRs and in outflows
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Simulated radio emission: 1012 M⊙ halo
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Simulated radio emission: 1011 M⊙ halo
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Far infra-red – radio correlation
Universal conversion: star formation → cosmic rays → radio

10−2 10−1 100 101 102
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Conclusions

energy budget in large galaxies is dominated by CR pressure
⇒ star formation suppressed

fluctuating small-scale dynamo grows magnetic fields in isolated
galaxies: driven by (i) corrugated accretion shock and (ii)
Kelvin-Helmholtz body modes excited by disk-halo velocity shear

small-scale dynamo clearly identified via growth rates, saturation
at εB ∼ εturb, power spectra, magnetic curvature statistics

magnetic fields saturate close to equipartition in Milky Way
centers and sub-equipartition at larger radii and in dwarfs
⇒ issue with ISM modeling and missing large-scale dynamo?

global LFIR − Lradio reproduced for galaxies with saturated
magnetic fields, scatter due to viewing angle and CR transport
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Lorentz force: magnetic curvature and pressure
Lorentz force density, expressed in terms of B in the MHD
approximation:

f L =
1
c

j × B =
1

4π
(∇× B)× B =

1
4π

(B ·∇)B − 1
8π

∇B2,

two terms on RHS are not magnetic curvature and pressure forces!

define B = Bb, where b is the unit vector along b and rewrite f L:

f L =
B2

4π
(b ·∇)b +

1
8π

b(b ·∇)B2 − 1
8π

∇B2

=
B2

4π
(b ·∇)b − 1

8π
∇⊥B2 ≡ f c + f p,

where ∇⊥ = (1 − bb) ·∇ is the perpendicular gradient

⇒ f c is the magnetic curvature force and f p is ⊥ mag. pressure force
define a magnetic curvature:

κ ≡ (b ·∇)b =
(1 − bb) · (B ·∇)B

B2 =
4π f c

B2 ,
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Correlating magnetic curvature to field strength – 1
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emergence of magnetic field and curvature in the galaxy centre

panels show from left to right:

(i) exponential growth phase in the kinematic regime
(ii) growth of the magnetic coherence scale
(iii) saturation phase of the magnetic dynamo
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Correlating magnetic curvature to field strength – 2
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separating different dynamo processes by spatial cuts during
saturated phase

superposition of different small-scale dynamos

each dynamo grows at a different characteristic density or eddy
turnover time
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Literature for the talk

Cosmic rays and non-thermal emission in galaxies:
Pfrommer, Werhahn, Pakmor, Girichidis, Simpson, Simulating radio synchrotron
emission in star-forming galaxies: small-scale magnetic dynamo and the origin
of the far infrared-radio correlation, 2022, MNRAS, 515, 4229.

Werhahn, Pfrommer, Girichidis, Puchwein, Pakmor, Cosmic rays and
non-thermal emission in simulated galaxies. I. Electron and proton spectra
explain Voyager-1 data, 2021a, MNRAS 505, 3273.

Werhahn, Pfrommer, Girichidis, Winner, Cosmic rays and non-thermal emission
in simulated galaxies. II. γ-ray maps, spectra and the far infrared-γ-ray relation,
2021b, MNRAS, 505, 3295.

Werhahn, Pfrommer, Girichidis, Cosmic rays and non-thermal emission in
simulated galaxies. III. probing cosmic ray calorimetry with radio spectra and the
FIR-radio correlation, 2021c, MNRAS, 508, 4072.

Pfrommer, Pakmor, Schaal, Simpson, Springel, Simulating cosmic ray physics on
a moving mesh, 2017, MNRAS, 465, 4500.
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