Galaxy formation with cosmic rays: the importance of the gamma-ray window

Christoph Pfrommer¹

in collaboration with

T. Thomas¹, M. Pais¹, M. Werhahn¹, G. Winner¹, P. Girichidis¹, R. Pakmor², S. Jacob³, K. Schaal³, C. Simpson³, V. Springel²

¹AIP, ²MPA, ³HITS

TeVPA 2018, Berlin – Aug 2018

Outline

Small galactic scales

- Modelling physics in galaxies
- Supernova explosions
- Particle acceleration

2 Galaxy formation

- Cosmic ray advection
- Cosmic ray diffusion
- γ-ray emission

Modelling physics in galaxies Supernova explosions Particle acceleration

Outline

Small galactic scales

- Modelling physics in galaxies
- Supernova explosions
- Particle acceleration

Galaxy formation

- Cosmic ray advection
- Cosmic ray diffusion
- γ-ray emission

Modelling physics in galaxies Supernova explosions Particle acceleration

Simulations – flowchart

observables:

physical processes:

э

CP, Pakmor, Schaal, Simpson, Springel (2017a)

Modelling physics in galaxies Supernova explosions Particle acceleration

Simulations with cosmic ray physics

observables:

physical processes:

Modelling physics in galaxies Supernova explosions Particle acceleration

Simulations with cosmic ray physics

observables:

physical processes:

Modelling physics in galaxies Supernova explosions Particle acceleration

Simulations with cosmic ray physics

observables:

physical processes:

Modelling physics in galaxies

Cosmological moving-mesh code AREPO (Springel 2010)

Christoph Pfrommer

Galaxy formation with cosmic rays

Modelling physics in galaxies Supernova explosions Particle acceleration

Sedov explosion

density

1.0 4.0 - 3.5 0.8 3.0 0.6 2.5 2.0 ີ 0.4 1.5 1.0 0.2 0.5 0.0 0.2 0.4 0.6 0.8 1.0

CP, Pakmor, Schaal, Simpson, Springel (2017a)

specific thermal energy

Modelling physics in galaxies Supernova explosions Particle acceleration

Sedov explosion with CR acceleration

density

CP, Pakmor, Schaal, Simpson, Springel (2017a)

Modelling physics in galaxies Supernova explosions Particle acceleration

Sedov explosion with CR acceleration

adiabatic index

shock evolution

CP, Pakmor, Schaal, Simpson, Springel (2017a)

Modelling physics in galaxies Supernova explosions Particle acceleration

Ion spectrum Non-relativistic *parallel shock* in long-term hybrid simulation

- quasi-parallel shocks ($\boldsymbol{B} \parallel \boldsymbol{n}_{s}$) efficiently accelerate ions
- quasi-perpendicular shocks $(\boldsymbol{B} \perp \boldsymbol{n}_s)$ cannot
- model magnetic obliquity in AREPO simulations

Modelling physics in galaxies Supernova explosions Particle acceleration

TeV γ rays from shell-type SNRs: SNR 1006

AREPO simulation

Pais, CP, Ehlert (2018)

H.E.S.S. observation

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Galaxy formation with cosmic rays

Modelling physics in galaxies Supernova explosions Particle acceleration

TeV γ rays from shell-type SNRs: Vela Junior

AREPO simulation

Pais, CP, Ehlert (2018)

H.E.S.S. observation

・ロット (雪) (山) (山)

Modelling physics in galaxies Supernova explosions Particle acceleration

TeV γ rays from shell-type supernova remnants Varying magnetic coherence scale in simulations of SN1006 and Vela Junior

Christoph Pfrommer

Galaxy formation with cosmic rays

Modelling physics in galaxies Supernova explosions Particle acceleration

TeV γ rays from shell-type SNRs: Vela Junior

Christoph Pfrommer

Galaxy formation with cosmic rays

Cosmic ray advection Cosmic ray diffusion _Y-ray emission

Outline

Small galactic scales

- Modelling physics in galaxies
- Supernova explosions
- Particle acceleration

2 Galaxy formation

- Cosmic ray advection
- Cosmic ray diffusion
- γ-ray emission

ъ

Cosmic ray advection Cosmic ray diffusion γ -ray emission

Galaxy simulation setup: 1. cosmic ray advection

CP, Pakmor, Schaal, Simpson, Springel (2017a) Simulating cosmic ray physics on a moving mesh MHD + cosmic ray advection: $\{10^{10}, 10^{11}, 10^{12}\} M_{\odot}$

Cosmic ray advection Cosmic ray diffusion γ -ray emission

Time evolution of SFR and energy densities

CP, Pakmor, Schaal, Simpson, Springel (2017a)

- CR pressure feedback suppresses SFR more in smaller galaxies
- energy budget in disks is dominated by CR pressure
- magnetic dynamo faster in Milky Way galaxies than in dwarfs

Cosmic ray advection Cosmic ray diffusion γ -ray emission

MHD galaxy simulation without CRs

CP, Pakmor, Schaal, Simpson, Springel (2017a)

Cosmic ray advection Cosmic ray diffusion γ -ray emission

MHD galaxy simulation with CRs

CP, Pakmor, Schaal, Simpson, Springel (2017a)

Christoph Pfrommer

Galaxy formation with cosmic rays

Cosmic ray advection Cosmic ray diffusion γ -ray emission

Galaxy simulation setup: 2. cosmic ray diffusion

Pakmor, CP, Simpson, Springel (2016) Galactic winds driven by isotropic and anisotropic cosmic ray diffusion in isolated disk galaxies

MHD + CR advection + diffusion: 10¹¹ M_☉

Cosmic ray advection Cosmic ray diffusion γ -ray emission

MHD galaxy simulation with CR diffusion

Pakmor, CP, Simpson, Springel (2016)

- CR diffusion launches powerful winds
- simulation without CR diffusion exhibits only weak fountain flows

Cosmic ray advection Cosmic ray diffusion γ -ray emission

Cosmic ray driven wind: mechanism

CR streaming in 3D simulations: Uhlig, CP+ (2012), Ruszkowski+ (2017) CR diffusion in 3D simulations: Jubelgas+ (2008), Booth+ (2013), Hanasz+ (2013), Salem & Bryan (2014), Pakmor, CP+ (2016), Simpson+ (2016), Girichidis+ (2016), Dubois+ (2016), CP+ (2017b), Jacob+ (2018)

Cosmic ray advection Cosmic ray diffusion γ -ray emission

CR-driven winds: dependence on halo mass

Cosmic ray advection Cosmic ray diffusion γ -ray emission

CR-driven winds: suppression of star formation

Cosmic ray advectior Cosmic ray diffusion γ -ray emission

Galaxy simulation setup: 3. non-thermal emission

CP, Pakmor, Simpson, Springel (2017b, 2018) Simulating radio synchrotron and gamma-ray emission in galaxies MHD + CR advection + diffusion: $\{10^{10}, 10^{11}, 10^{12}\} M_{\odot}$

Cosmic ray advection Cosmic ray diffusion γ -ray emission

Simulation of Milky Way-like galaxy, t = 0.5 Gyr

Cosmic ray advection Cosmic ray diffusion γ -ray emission

Simulation of Milky Way-like galaxy, t = 1.0 Gyr

Cosmic ray advection Cosmic ray diffusion γ -ray emission

Simulation of Milky Way-like galaxy, t = 1.0 Gyr

Cosmic ray advection Cosmic ray diffusion γ -ray emission

γ -ray and radio emission of Milky Way-like galaxy

Cosmic ray advection Cosmic ray diffusion γ -ray emission

Far infra-red – gamma-ray correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

Cosmic ray advection Cosmic ray diffusion γ -ray emission

Far infra-red – gamma-ray correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

Cosmic ray advection Cosmic ray diffusion γ -ray emission

Far infra-red – gamma-ray correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

Cosmic ray advection Cosmic ray diffusion γ -ray emission

Far infra-red – gamma-ray correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow gamma rays

Cosmic ray advection Cosmic ray diffusion γ -ray emission

Conclusions on CR feedback in galaxies and clusters

- CR pressure feedback slows down star formation
- galactic winds are naturally explained by CR diffusion & streaming

Image: A matrix

Cosmic ray advection Cosmic ray diffusion γ -ray emission

Conclusions on CR feedback in galaxies and clusters

- CR pressure feedback slows down star formation
- galactic winds are naturally explained by CR diffusion & streaming
- anisotropic CR diffusion necessary for efficient galactic dynamo: observed field strengths of *B* ~ 10 μG
- $L_{\text{FIR}} L_{\gamma}$ and $L_{\text{FIR}} L_{\text{radio}}$ correlations enable us to test the calorimetric assumption and magnetic dynamo theories

Cosmic ray advection Cosmic ray diffusion γ -ray emission

Conclusions on CR feedback in galaxies and clusters

- CR pressure feedback slows down star formation
- galactic winds are naturally explained by CR diffusion & streaming
- anisotropic CR diffusion necessary for efficient galactic dynamo: observed field strengths of *B* ~ 10 μG
- L_{FIR} L_γ and L_{FIR} L_{radio} correlations enable us to test the calorimetric assumption and magnetic dynamo theories

outlook: improved modeling of plasma physics, follow CR spectra, cosmological settings

need: comparison to resolved radio/ γ -ray observations \rightarrow **SKA/CTA**

ヘロト ヘヨト ヘヨト ヘ

Cosmic ray advection Cosmic ray diffusion γ -ray emission

CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtioN

Christoph Pfrommer

Galaxy formation with cosmic rays

Cosmic ray advection Cosmic ray diffusion γ -ray emission

Literature for the talk – 1

Cosmic ray acceleration:

- Pais, Pfrommer, Ehlert, Constraining the coherence scale of the interstellar magnetic field using TeV gamma-ray observations of supernova remnants, 2018.
- Pais, Pfrommer, Ehlert, Pakmor, The effect of cosmic-ray acceleration on supernova blast wave dynamics, 2018, MNRAS.

Cosmic ray feedback in galaxies:

- Pfrommer, Pakmor, Schaal, Simpson, Springel, *Simulating cosmic ray physics on a moving mesh*, 2017a, MNRAS.
- Pakmor, Pfrommer, Simpson, Springel, Galactic winds driven by isotropic and anisotropic cosmic ray diffusion in isolated disk galaxies, 2016, ApJL.
- Jacob, Pakmor, Simpson, Springel, Pfrommer, The dependence of cosmic ray driven galactic winds on halo mass, 2018, MNRAS.
- Pfrommer, Pakmor, Simpson, Springel, Simulating Gamma-ray Emission in Star-forming Galaxies, 2017b, ApJL.
- Pfrommer, Pakmor, Simpson, Springel, *Simulating Radio Synchrotron Emission in Galaxies: the Origin of the Far Infrared–Radio Correlation,* 2018.

ヘロト ヘアト ヘヨト ヘ

Cosmic ray advection Cosmic ray diffusion γ -ray emission

Additional slides

ъ

イロン イロン イヨン イヨン

Cosmic ray advection Cosmic ray diffusion γ -ray emission

γ -ray and radio emission of Milky Way-like galaxy

Cosmic ray advection Cosmic ray diffusion γ -ray emission

Far infra-red – radio correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow radio

Cosmic ray advection Cosmic ray diffusion γ -ray emission

Far infra-red – radio correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow radio

Cosmic ray advection Cosmic ray diffusion γ -ray emission

Far infra-red – radio correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow radio

Cosmic ray advection Cosmic ray diffusion γ -ray emission

Far infra-red – radio correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow radio

Cosmic ray advection Cosmic ray diffusion γ -ray emission

Far infra-red – radio correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow radio

Cosmic ray advection Cosmic ray diffusion γ -ray emission

Far infra-red – radio correlation Universal conversion: star formation \rightarrow cosmic rays \rightarrow radio

