Cosmic rays in galaxy clusters and cosmological shock waves
Going beyond gas physics

Christoph Pfrommer

Canadian Institute for Theoretical Astrophysics, Toronto

Mar. 13 2006 / Colloquium UBC, Vancouver
Outline

1. Non-equilibrium processes in clusters
 - Introduction
 - Cluster radio halos
 - Minimum energy condition

2. Cosmic rays in GADGET
 - Importance of cosmic ray feedback
 - Philosophy and description

3. Cosmological shock waves
 - Observations of cluster shocks
 - Mach number finder
 - Cosmological simulations
 - Cluster simulations
Outline

1. Non-equilibrium processes in clusters
 - Introduction
 - Cluster radio halos
 - Minimum energy condition

2. Cosmic rays in GADGET
 - Importance of cosmic ray feedback
 - Philosophy and description

3. Cosmological shock waves
 - Observations of cluster shocks
 - Mach number finder
 - Cosmological simulations
 - Cluster simulations
Cluster non-equilibrium processes
Cosmic rays in GADGET
Cosmological shock waves
Summary

Outline

1. Non-equilibrium processes in clusters
 - Introduction
 - Cluster radio halos
 - Minimum energy condition

2. Cosmic rays in GADGET
 - Importance of cosmic ray feedback
 - Philosophy and description

3. Cosmological shock waves
 - Observations of cluster shocks
 - Mach number finder
 - Cosmological simulations
 - Cluster simulations
Galaxy clusters are dynamically evolving dark matter potential wells:

- protons and electrons
- shock waves inject CR
- CRe: ~ 10 GeV
- gas: ~ 3 keV
- B: ~ 3 μG
- synchrotron emission
- diffuse radio (GHz)
- Space
Each frequency window is sensitive to different processes and cluster properties:

- **optical**: gravitational lensing of background galaxies, galaxy velocity dispersion measure gravitational mass
- **X-ray**: thermal plasma emission, \(F_X \propto n_{th}^2 \sqrt{T_{th}} \rightarrow \) thermal gas with abundances, cluster potential, substructure
- **Sunyaev-Zel’dovich effect**: IC upscattering of CMB photons by thermal electrons, \(F_{SZ} \propto p_{th} \rightarrow \) cluster velocity, turbulence, high-z clusters
- **radio synchrotron halos**: \(F_{sy} \propto \varepsilon_B \varepsilon_{CRE} \rightarrow \) magnetic fields, CR electrons, shock waves
- **diffuse \(\gamma \)-ray emission**: \(F_{\gamma} \propto n_{th} n_{CRp} \rightarrow \) CR protons
Each frequency window is sensitive to different processes and cluster properties:

- **optical**: gravitational lensing of background galaxies, galaxy velocity dispersion measure gravitational mass
- X-ray: thermal plasma emission, \(F_X \propto n_{th}^2 \sqrt{T_{th}} \rightarrow \) thermal gas with abundances, cluster potential, substructure
- Sunyaev-Zel'dovich effect: IC upscattering of CMB photons by thermal electrons, \(F_{SZ} \propto p_{th} \rightarrow \) cluster velocity, turbulence, high-z clusters
- radio synchrotron halos: \(F_{sy} \propto \epsilon_B \epsilon_{CRE} \rightarrow \) magnetic fields, CR electrons, shock waves
- diffuse \(\gamma \)-ray emission: \(F_{\gamma} \propto n_{th} n_{CRp} \rightarrow \) CR protons
Each frequency window is sensitive to different processes and cluster properties:

- **optical**: gravitational lensing of background galaxies, galaxy velocity dispersion measure gravitational mass
- **X-ray**: thermal plasma emission, \(F_X \propto n_{th}^2 \sqrt{T_{th}} \rightarrow \text{thermal gas with abundances, cluster potential, substructure} \)
- **Sunyaev-Zel’dovich effect**: IC upscattering of CMB photons by thermal electrons, \(F_{SZ} \propto p_{th} \rightarrow \text{cluster velocity, turbulence, high-z clusters} \)
- radio synchrotron halos: \(F_{sy} \propto \varepsilon_B \varepsilon_{CRE} \rightarrow \text{magnetic fields, CR electrons, shock waves} \)
- diffuse \(\gamma \)-ray emission: \(F_\gamma \propto n_{th} n_{CRp} \rightarrow \text{CR protons} \)
Each frequency window is sensitive to different processes and cluster properties:

- **optical**: gravitational lensing of background galaxies, galaxy velocity dispersion measure gravitational mass
- **X-ray**: thermal plasma emission, \(F_X \propto n_{th}^2 \sqrt{T_{th}} \rightarrow \) thermal gas with abundances, cluster potential, substructure
- **Sunyaev-Zel’dovich effect**: IC upscattering of CMB photons by thermal electrons, \(F_{SZ} \propto p_{th} \rightarrow \) cluster velocity, turbulence, high-z clusters
- **radio synchrotron halos**: \(F_{sy} \propto \varepsilon_B \varepsilon_{CR} \rightarrow \) magnetic fields, CR electrons, shock waves
- **diffuse \(\gamma \)-ray emission**: \(F_{\gamma} \propto n_{th} n_{CRp} \rightarrow \) CR protons
Coma cluster: optical emission
Coma cluster: infra-red emission
Cluster non-equilibrium processes
Cosmic rays in GADGET
Cosmological shock waves
Summary

Introduction
Cluster radio halos
Minimum energy condition

Coma cluster: X-ray emission
Coma cluster: radio synchrotron emission
Models for radio synchrotron halos in clusters

Halo characteristics: smooth unpolarized radio emission at scales of 3 Mpc.
Different CR electron populations:

- **Primary accelerated CR electrons**: synchrotron/IC cooling times too short to account for extended diffuse emission
- **Re-accelerated CR electrons** through resonant interaction with turbulent Alfvén waves: possibly too inefficient, no first principle calculations (Jaffe 1977, Schlickeiser 1987, Brunetti 2001)
Hadronic cosmic ray proton interaction
Cosmic rays in clusters of galaxies
What do we know about CRs?

- predictions for the CR pressure span between 10% and 50% of the cluster’s pressure budget
- escape of cosmic ray protons only possible for energies $E_{\text{CRp}} > 2 \times 10^{16} \text{ eV}$
- energy losses (for particles with $E \sim 10$ GeV):
 - CRe: synchrotron, inverse Compton: $\tau \sim 10^8 \text{ yr}$
 - CRp: inelastic collisions, Coulomb losses: $\tau \sim 10^{10} \text{ yr} \sim \text{Hubble time}$

Coma cluster: radio halo, $\nu = 1.4$ GHz, $2.5^\circ \times 2.0^\circ$

(Credit: Deiss/Effelsberg)
Cooling core clusters are efficient CRp detectors

ROSAT observation: Perseus galaxy cluster

Credit: NASA/LoA/A. Fabian et al.
Credit: ROSAT/PSPC

Chandra observation: central region of Perseus

Credit: NASA/LoA/A. Fabian et al.
Credit: ROSAT/PSPC
Cooling core cluster model of CRp detection

Perseus galaxy cluster

\[\epsilon_{\text{CRp}} = \chi_{\text{CRp}} \epsilon_{\text{th}} \]
Gamma-ray flux of the Perseus galaxy cluster
IC emission of secondary CRs ($B = 0$), π^0-decay induced γ-ray emission:

\[\frac{dF_\gamma}{dE_\gamma} \propto [X_{\text{CRp}}] \gamma \text{ cm}^{-2} \text{s}^{-1} \text{GeV}^{-1} \]

\[\alpha_p = 2.1, 2.3, 2.5, 2.7 \]
Upper limits on X_{CRp} using EGRET limits

![Graph showing upper limits on X_{CRp} using EGRET limits for various clusters.]

- **Cool core cluster:**
 - A85
 - Perseus
 - A2199
 - Centaurus
 - Ophiuchus
 - Triangulum Australis
 - Virgo

- **Non-cool core cluster:**
 - Coma
 - A2256
 - A2319
 - A3571

The graph illustrates the upper limits on X_{CRp} for various clusters, with $X_{CRp} = \varepsilon_{CRp}/\varepsilon_{th}$, where α_p values are indicated for different clusters:

- $\alpha_p = 2.1$
- $\alpha_p = 2.3$
- $\alpha_p = 2.7$
- $\alpha_p = 2.3$, radio

The magnetic field strength $B = 10 \mu G$ is also shown.
Radio halos: Coma and Perseus

Coma radio halo, $\nu = 1.4$ GHz,
largest emission diameter ~ 3 Mpc
(Credit: Deiss/Effelsberg)

Perseus mini-halo, $\nu = 1.4$ GHz,
largest emission size ~ 0.5 Mpc
(Credit: Pedlar/VLA)
Minimum energy criterion (MEC): the idea

\[\varepsilon_{NT} = \varepsilon_B + \varepsilon_{CRp} + \varepsilon_{CRe} \]

\[\rightarrow \text{minimum energy criterion: } \left. \frac{\partial \varepsilon_{NT}}{\partial \varepsilon_B} \right|_{j_\nu} \equiv 0 \]

- classical MEC: \(\varepsilon_{CRp} = k_p \varepsilon_{CRe} \)
- hadronic MEC: \(\varepsilon_{CRp} \propto (\varepsilon_B + \varepsilon_{CMB}) \varepsilon_B^{-(\alpha_\nu + 1)/2} \)

defining tolerance levels: deviation from minimum by one e-fold
Classical minimum energy criterion

\[X_{\text{CRp}}(r) = \frac{\varepsilon_{\text{CRp}}(r)}{\varepsilon_{\text{th}}}, \quad X_{B}(r) = \frac{\varepsilon_{B}(r)}{\varepsilon_{\text{th}}(r)} \]

Coma cluster: classical minimum energy criterion

Perseus cluster: classical minimum energy criterion

\[B_{\text{Coma}}(0) = 1.1^{+0.7}_{-0.4} \mu G \]

\[B_{\text{Perseus}}(0) = 7.2^{+4.5}_{-2.8} \mu G \]
$X_{\text{CRp}}(r) = \frac{\varepsilon_{\text{CRp}}(r)}{\varepsilon_{\text{th}}(r)}$, $X_B(r) = \frac{\varepsilon_B(r)}{\varepsilon_{\text{th}}(r)}$

Coma cluster: hadronic minimum energy condition

Perseus cluster: hadronic minimum energy condition

$B_{\text{Coma}}(0) = 2.4^{+1.7}_{-1.0} \mu G$

$B_{\text{Perseus}}(0) = 8.8^{+13.8}_{-5.4} \mu G$
A galactic outflow seen at high redshift. Left: the projected gas density around some of the first star forming galaxies. Right: generated bubbles of hot gas, as seen in the temperature map (Springel & Hernquist 2002).
Potential effects of cosmic ray feedback

Mostly speculations so far

- **Feedback on galactic scales:**
 - Regulation of star formation efficiency due to extra CR pressure.
 - Driving Galactic outflows due to buoyant rise of CRs in star forming regions.
 - Radiative cooling losses of galaxies altered by different CR cooling times → gas flow in halos might be affected.

- **Feedback on larger scales:**
 - Changing the total baryonic fraction that ends up in collapsed structures due to effects of different CR cooling times and equation of state.
 - CRs might change the absorption properties at high redshift.
Potential effects of cosmic ray feedback
Mostly speculations so far

- **Feedback on galactic scales:**
 - Regulation of star formation efficiency due to extra CR pressure.
 - Driving Galactic outflows due to buoyant rise of CRs in star forming regions.
 - Radiative cooling losses of galaxies altered by different CR cooling times → gas flow in halos might be affected.

- **Feedback on larger scales:**
 - Changing the total baryonic fraction that ends up in collapsed structures due to effects of different CR cooling times and equation of state.
 - CRs might change the absorption properties at high redshift.
Our model describes the CR physics by three adiabatic invariants:

1. CRs are coupled to the thermal gas by magnetic fields.
2. We assume a single power-law CR spectrum: momentum cutoff q, normalization C, spectral index α (constant).
3. q determines CR energy density and pressure.

In adiabatic processes, q and C scale only with the density. Non-adiabatic processes are mapped into changes of the adiabatic constants q_0 and C_0.
Cosmic rays and cosmological shock waves

C. Pfrommer

Cosmic rays in GADGET—flowchart

Thermal Energy

- Radiative cooling
- Shocks
- Supernovae

- Thermal Conduction
- Coulomb losses
- CR Diffusion

Cosmic Ray Energy

- Catastrophic losses

Existing

New
Diffusive shock acceleration – Fermi 1 mechanism

Cosmic rays gain energy $\Delta E/E \propto v_1 - v_2$ through bouncing back and forth the shock front. Accounting for the loss probability $\propto v_2$ of particles leaving the shock downstream leads to power-law CR population.
Observations of cluster shock waves

1E 0657-56 ("Bullet cluster")
(NASA/SAO/CXC/M.Markevitch et al.)

Abell 3667
(Radio: Austr.TC Array. X-ray: ROSAT/PSPC.)
Applications for a shock finder in SPH simulations

- **Cosmological shocks** dissipate gravitational energy into thermal gas energy
- **Shock waves are tracers** of the large scale structure and contain information about its dynamical history (warm-hot intergalactic medium)
- **Shocks accelerate energetic particles** (cosmic rays) through diffusive shock acceleration at structure formation shocks
- **Cosmic ray injection** by supernova remnants (when combined with radiative dissipation and star formation)
- **Shock-induced star formation** in the interstellar medium
Idea of the Mach number finder

- SPH shock is broadened to a scale of the order of the smoothing length h, i.e. $f_h h$, and $f_h \sim 2$
- approximate instantaneous particle velocity by pre-shock velocity (denoted by $v_1 = M_1 c_1$)

Using the entropy conserving formalism of Springel & Hernquist 2002 ($A(s) = P \rho^{-\gamma}$ is the entropic function):

\[
\frac{A_2}{A_1} = \frac{A_1 + \frac{dA_1}{dt}}{A_1} = 1 + \frac{f_h h}{M_1 c_1 A_1} \frac{dA_1}{dt} = \frac{P_2}{P_1} \left(\frac{\rho_1}{\rho_2} \right) \gamma
\]

\[
\frac{\rho_2}{\rho_1} = \frac{(\gamma + 1) M_1^2}{(\gamma - 1) M_1^2 + 2}
\]

\[
\frac{P_2}{P_1} = \frac{2 \gamma M_1^2 - (\gamma - 1)}{\gamma + 1}
\]
Complications of the numerical implementation

- **Broad Mach number distributions**
 \[f(\mathcal{M}) = \frac{d u_{th}}{d t \, d \log \mathcal{M}} \]
 because particle quantities within the (broadened) shock front do not correspond to those of the pre-shock regime.
 Solution: introduce decay time \(\Delta t_{\text{dec}} = f_h h / (\mathcal{M}_1 c) \), meanwhile the Mach number is set to the maximum (only allowing for its rise in the presence of multiple shocks).

- **Weak shocks imply large values of \(\Delta t_{\text{dec}} \):**
 Solution: \(\Delta t_{\text{dec}} = \min[f_h h / (\mathcal{M}_1 c), \Delta t_{\text{max}}] \)

- **Strong shocks with \(\mathcal{M} > 5 \) are slightly underestimated**
 because there is no universal shock length.
 Solution: recalibrate strong shocks!
Shock tube ($\mathcal{M} = 10$): thermodynamics

- **Density**
- **Velocity**
- **Pressure**
- **Mach number**

Observations
Mach number finder
Cosmological simulations
Cluster simulations

C. Pfrommer

Cosmic rays and cosmological shock waves
Shock tube: Mach number statistics

\[\left\langle \frac{du_{\text{th}}}{dt} \frac{d\log M}{dM} \right\rangle \]

\[\left\langle \frac{du_{\text{th}}}{dt} \right\rangle \]

\[\left\langle \frac{d\log M}{dM} \right\rangle \]

\[\left\langle \frac{du_{\text{th}}}{dt} \frac{d\log M}{dM} \right\rangle \]

\[\left\langle \frac{du_{\text{th}}}{dt} \right\rangle \]

\[\left\langle \frac{d\log M}{dM} \right\rangle \]
Shock tube (CRs & gas, $M = 10$): thermodynamics

Density

Velocity

Pressure

Mach number
Shock tube (CRs & gas): Mach number statistics
Cosmological Mach numbers: weighted by $\varepsilon_{\text{diss}}$
Cluster non-equilibrium processes
Cosmic rays in GADGET
Cosmological shock waves
Summary

Observations
Mach number finder
Cosmological simulations
Cluster simulations

Cosmological Mach numbers: weighted by ε_{CR}
Cosmological statistics: resolution study

C. Pfrommer

Cosmic rays and cosmological shock waves
Cosmological statistics: influence of reionization

\[\frac{d^2 \epsilon_{\text{diss}}(a, M)}{d \log a \, d \log M} [10^{50} \text{ergs} (h^{-1} \text{Mpc})^3] \]

\[\frac{d \epsilon_{\text{diss}}(a) \, d \log M}{d \log a} [10^{50} \text{ergs} (h^{-1} \text{Mpc})^3] \]

\[\frac{d \epsilon_{\text{diss}}(M)}{d \log M} : \]
- with reionization
- without reionization

\[\frac{d \epsilon_{\text{CR}}(M)}{d \log M} : \]
- with reionization

\[\frac{d \epsilon_{\text{diss}}(a)}{d \log a} \]
- with reionization
Adiabatic cluster simulation: gas density
Mass weighted temperature

![Mass weighted temperature](image)

- **Cluster non-equilibrium processes**
- **Cosmic rays in GADGET**
- **Cosmological shock waves**
- **Summary**

Observations
- Mach number finder
- Cosmological simulations
- Cluster simulations

C. Pfrommer

Cosmic rays and cosmological shock waves
Observations

Mach number finder

Cosmological simulations

Cluster simulations

Cluster non-equilibrium processes

Cosmic rays in GADGET

Cosmological shock waves

Summary

Mach number distribution weighted by $\varepsilon_{\text{diss}}$
Relative CR pressure P_{CR}/P_{total}

Cluster non-equilibrium processes
Cosmic rays in GADGET
Cosmological shock waves
Summary

Observations
Mach number finder
Cosmological simulations
Cluster simulations

C. Pfrommer

Cosmic rays and cosmological shock waves
Equation of state for CRs

\[
\log \left(\frac{P_{CR}}{P_{th}} \right) = \log \left(1 + \delta_{\text{gas}} \right)
\]

Probability density [arbitrary units]
Understanding **non-thermal processes** is crucial for using clusters as cosmological probes (high-z scaling relations).

- Radio halos might be of hadronic origin as our simulations suggests.

- Huge potential and predictive power of cosmological CR simulations/Mach number finder \rightarrow provides detailed γ-ray/radio emission maps

Outlook

- Galaxy evolution: influence on energetic feedback, star formation, and galactic winds
- Exploring the CR influence on the absorption properties at high redshift.
Summary

- **Understanding non-thermal processes** is crucial for using clusters as cosmological probes (high-z scaling relations).
- **Radio halos** might be of hadronic origin as our simulations suggest.
- Huge potential and predictive power of cosmological CR simulations/Mach number finder → provides detailed γ-ray/radio emission maps.

Outlook

- Galaxy evolution: influence on energetic feedback, star formation, and galactic winds.
- Exploring the CR influence on the absorption properties at high redshift.
Understanding **non-thermal processes** is crucial for using clusters as cosmological probes (high-z scaling relations).

Radio halos might be of hadronic origin as our simulations suggests.

Huge potential and predictive power of **cosmological CR simulations/Mach number finder** → provides detailed \(\gamma\)-ray/radio emission maps

Outlook

- Galaxy evolution: influence on energetic feedback, star formation, and galactic winds
- Exploring the CR influence on the absorption properties at high redshift.
Summary

- Understanding **non-thermal processes** is crucial for using clusters as cosmological probes (high-z scaling relations).
- **Radio halos** might be of hadronic origin as our simulations suggests.
- Huge potential and predictive power of **cosmological CR simulations/Mach number finder** → provides detailed \(\gamma \)-ray/radio emission maps

Outlook
- Galaxy evolution: influence on energetic feedback, star formation, and galactic winds
- Exploring the CR influence on the absorption properties at high redshift.