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Cluster non-equilibrium processes : )
Introduction

Cluster radio halos
Minimum energy condition

Galaxy clusters

Galaxy clusters are dynamically evolving dark matter potential wells:

Energy
A
shock waves inject CR
protons and electrons

~

gas: ~3 keV
B: ~3muG
CRe: ~ 10 GeV

— diffuse radio (GHz)
synchrotron emission

» Space
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Radio halos as window for non-equilibrium processes

Exploring complementary methods for studying cluster formation

Each frequency window is sensitive to different processes and
cluster properties:
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Radio halos as window for non-equilibrium processes

Exploring complementary methods for studying cluster formation

Each frequency window is sensitive to different processes and
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@ optical: gravitational lensing of background galaxies, galaxy velocity
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Cluster non-equilibrium processes .
q p Introduction

Cluster radio halos
Minimum energy condition

Radio halos as window for non-equilibrium processes

Exploring complementary methods for studying cluster formation

Each frequency window is sensitive to different processes and
cluster properties:

@ optical: gravitational lensing of background galaxies, galaxy velocity
dispersion measure gravitational mass

@ X-ray: thermal plasma emission, Fy o /T — thermal gas with
abundances, cluster potential, substructure

@ Sunyaev-Zel'dovich effect: IC upscattering of CMB photons by thermal
electrons, Fsz o pyn — cluster velocity, turbulence, high-z clusters

@ radio synchrotron halos: Fsy x egecre — magnetic fields, CR electrons,
shock waves

@ diffuse ~y-ray emission: F, o nnncr, — CR protons
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Cluster non-equilibrium processes .
q p Introduction

Cluster radio halos
Minimum energy condition

- Coma cluster: optical emission
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Cluster non-equilibrium processes .
q p Introduction

Cluster radio halos
Minimum energy condition

- Coma cluster: infra-red emission
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Cluster non-equilibrium processes )
q p Introduction

Cluster radio halos
Minimum energy condition

~ Coma cluster: radio synchrotron emission
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Cluster non-equilibrium processes : )
Introduction

Cluster radio halos
Minimum energy condition

Models for radio synchrotron halos in clusters

Halo characteristics: smooth unpolarized radio emission at
scales of 3 Mpc.
Different CR electron populations:

@ Primary accelerated CR electrons: synchrotron/IC cooling
times too short to account for extended diffuse emission

@ Re-accelerated CR electrons through resonant interaction
with turbulent Alfvén waves: possibly too inefficient, no first
principle calculations (Jaffe 1977, Schlickeiser 1987, Brunetti 2001)

@ Hadronically produced CR electrons in inelastic collisions
of CR protons with the ambient gas (Dennison 1980, Vestrad
1982, Miniati 2001, Pfrommer 2004)

CITA-ICAT

C. Pfrommer Cosmic rays and cosmological shock waves



| r non-equilibrium processes )
Cluster non-eq p Introduction

Cluster radio halos
Minimum energy condition

Hadronic cosmic ray proton interaction
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Cluster non-equilibrium processes

Introduction
Cluster radio halos
Minimum energy condition

Cosmic rays in clusters of galaxies

What do we know about CRs?

@ predictions for the CR pressure
span between 10% and 50% of the
cluster’s pressure budget

@ escape of cosmic ray protons only
possible for energies
ECRp >2x 106 eV

@ energy losses (for particles with

E ~10 GeV):
CRe: synchrotron, inverse Coma cluster: radio halo,
Compton: 7 ~ 108 yr v =1.4GHz, 2.5° x 2.0°

CRp: inelastic collisions, Coulomb  (credit: peissiEelsberg)
losses: 7 ~ 1010 yr ~ Hubble time
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Cluster non-equilibrium processes )
q p Introduction

Cluster radio halos
Minimum energy condition

- Cooling core clusters are efficient CRp detectors

ROSAT observation:
Perseus galaxy cluster

Credit: NASA/IoA/A.Fabian et al.

Chandra observation:

central region of Perseus
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Cluster non-equilibrium processes )
q p Introduction

Cluster radio halos
Minimum energy condition

' Cooling core cluster model of CRp detection

Perseus galaxy cluster
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Cluster non-equilibrium processes

Introduction
Cluster radio halos
Minimum energy condition

Gamma-ray flux of the Perseus galaxy cluster

IC emission of secondary CRes (B = 0), °-decay induced ~-ray emission:
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Cluster non-equilibrium processes : )
Introduction

Cluster radio halos
Minimum energy condition

Upper limits on Xcg, using EGRET limits

Cool core cluster: T — T
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Cluster non-equilibrium processes )
q p Introduction

Cluster radio halos
Minimum energy condition

Radio halos: Coma and Perseus

Coma radio halo, v = 1.4 GHz, Perseus mini-halo, v = 1.4 GHz,

largest emission diameter ~ 3 Mpc largest emission size ~ 0.5 Mpc

(Credit: Deiss/Effelsberg) (Credit: Pedlar/VLA)
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Cluster non-equilibrium processes : )
Introduction

Cluster radio halos
Minimum energy condition

Minimum energy criterion (MEC): the idea

@ eNT = €B + ECRp + €CRe

— minimum energy criterion: %ET"“BT‘ i 0
Jv
@ classical MEC: ecprp = KpecRe
@ hadronic MEC: ecpp (8 + cmB) 5;(%—1—1)/2

€ A -
NT defining tolerance

levels: deviation
from minimum by
one e-fold

€
B.. B CITA-ICAT
min
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Cluster non-equilibrium processes U
Introduction

Cluster radio halos
Minimum energy condition

Classical minimum energy criterion

Xorp(r) = “22(r),  Xa(r) = £8(r)

Coma cluster: classical mini energy criterion Perseus cluster: classical mini energy criterion
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Cluster non-equilibrium processes

Introduction
Cluster radio halos
Minimum energy condition

Hadronic minimum energy criterion

Xorp(r) = “22(r),  Xa(r) = £8(r)

Coma cluster: hadronic mini; energy condition Perseus cluster: hadronic mini energy conditi
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Cosmic rays in GADGET Cosmic ray feedback
Philosophy and description

Cosm|C I’ayS in GADG ET(EnBIin, Jubelgas, Pfrommer, Springel)

A galactic outflow seen at high redshift. Left: the projected gas density around some of
the first star forming galaxies. Right: generated bubbles of hot gas, as seen in the

temperature map (Springel & Hernquist 2002). CITAZICAT
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Cosmic rays in GADGET Cosmic ray feedback
Philosophy and description

Potential effects of cosmic ray feedback

Mostly speculations so far

@ Feedback on galactic scales:
e Regulation of star formation efficiency due to extra CR
pressure.
e Driving Galactic outflows due to buoyant rise of CRs in star
forming regions.
e radiative cooling losses of galaxies altered by different CR
cooling times — gas flow in halos might be affected.
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Cosmic rays in GADGET Cosmic ray feedback
Philosophy and description

Potential effects of cosmic ray feedback

Mostly speculations so far

@ Feedback on galactic scales:
e Regulation of star formation efficiency due to extra CR
pressure.
e Driving Galactic outflows due to buoyant rise of CRs in star
forming regions.
e radiative cooling losses of galaxies altered by different CR
cooling times — gas flow in halos might be affected.

@ Feedback on larger scales:

e Changing the total baryonic fraction that ends up in
collapsed structures due to effects of different CR cooling
times and equation of state.

e CRs might change the absorption properties at high
redshift.
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Cosmic rays in GADGET Cosmic ray feedback
Philosophy and description

Philosophy and description

Our model describes the CR physics by three adiabatic invariants

@ CRs are coupled to the thermal gas by
magnetic fields. — C
@ We assume a single power-law CR

spectrum: momentum cutoff q,

normalization C, spectral index « |
og p

(constant). /
— determines CR energy density and q

pressure

In adiabatic processes, g and C scale only with the density. Non-adiabatic

processes are mapped into changes of the adiabatic constants gy and Cp.
CITA-ICAT
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Cosmic rays in GADGET
Philosophy and description

Cosmic rays in GADGET— flowchart

— existing

— new

.*-
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Observations
Mach number finder
Cosmological shock waves Cosmological simulations

Cluster simulations

Diffusive shock acceleration — Fermi 1 mechanism

Cosmic rays gain energy AE/E « vy — v, through bouncing back and forth
the shock front. Accounting for the loss probability o< v» of particles leaving
the shock downstream leads to power-law CR population.

A
log f

strong shock

weak shock

keV 10 GeV log p
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Observations

Mach number finder
Cosmological shock waves Cosmological simulations

Cluster simulations

- Observations of cluster shock waves

1E 0657-56 (“Bullet cluster”)

(NASA/SAO/CXC/M.Markevitch et al.)

(Radio: Austr.TC Array. X-ray: ROSAT/PSPC.) ./ aSCar
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Observations
Mach number finder
Cosmological shock waves Cosmological simulations

Cluster simulations

Applications for a shock finder in SPH simulations

@ cosmological shocks dissipate gravitational energy into
thermal gas energy

@ shock waves are tracers of the large scale structure and
contain information about its dynamical history (warm-hot
intergalactic medium)

@ shocks accelerate energetic particles (cosmic rays)
through diffusive shock acceleration at structure formation
shocks

@ cosmic ray injection by supernova remnants (when
combined with radiative dissipation and star formation)

@ shock-induced star formation in the interstellar medium
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Observations
Mach number finder
Cosmological shock waves Cosmological simulations

Cluster simulations

Idea of the Mach number finder

@ SPH shock is broadened to a scale of the order of the
smoothing length h, i.e. f,h, and f, ~ 2
@ approximate instantaneous particle velocity by pre-shock
velocity (denoted by v1 = M¢y)
Using the entropy conserving formalism of Springel &
Hernquist 2002 (A(s) = Pp~" is the entropic function):

Ao _ A + dA4

Ao SRR O

A A MiciAy dt Py \p2
2o+ IIME

p1 (vy—1M§+2

P 2Mi-(v-1)

P 1 v+ 1 CITA-ICAT
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Observations

Mach number finder
Cosmological shock waves Cosmological simulations

Cluster simulations

Complications of the numerical implementation

@ Broad Mach number distributions f(M) = dtddI%

because particle quantities within the (broadened) shock
front do not correspond to those of the pre-shock regime.
Solution: introduce decay time Alyec = foh/(M+0),
meanwhile the Mach number is set to the maximum (only
allowing for its rise in the presence of multiple shocks).

@ Weak shocks imply large values of Atlyec:
Solution: Atyec = min[fyh/(MC), Afmax]

@ Strong shocks with M > 5 are slightly underestimated
because there is no universal shock length.
Solution: recalibrate strong shocks!
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Observations

Mach number finder
Cosmological shock waves Cosmological simulations

Cluster simulations

Shock tube (M = 10): thermodynamics
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Cosmological shock waves

Observations

Mach number finder
Cosmological simulations
Cluster simulations

Shock tube: Mach number statistics

10 100
log M
L + +
L + ]
L+ ]
10 160
log M
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Observations
Mach number finder
Cosmological shock waves Cosmological simulations

Cluster simulations

Shock tube (CRs & gas, M = 10): thermodynamics

Density
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Observations
Mach number finder
Cosmological shock waves Cosmological simulations

Cluster simulations

Shock tube (CRs & gas): Mach number statistics
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Observations

Mach number finder
Cosmological shock waves Cosmological simulations

Cluster simulations

s: weighted by cgiss
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Observations

Mach number finder
Cosmological shock waves Cosmological simulations

Cluster simulations

s: weighted by ecRr
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Cosmological shock waves

Observations

Mach number finder
Cosmological simulations
Cluster simulations

Cosmological statistics: resolution study
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Observations
Mach number finder
Cosmological shock waves Cosmological simulations

Cluster simulations

Cosmological statistics: influence of reionization
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Observations

Mach number finder
Cosmological shock waves Cosmological simulations

Cluster simulations

Adiabatic cluster simulation: gas density

0 S 5 CITA-ICAT
x[h' Mpc |

C. Pfrommer Cosmic rays and cosmological shock waves



Observations
Mach number finder

Cosmological shock waves Cosmological simulations
Cluster simulations

Mass weighted temperature
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Observations
Mach number finder

Cosmological shock waves Cosmological simulations
Cluster simulations

Mach number distribution weighted by ejss
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Observations

Mach number finder
Cosmological simulations
Cluster simulations
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Observations

Mach number finder
Cosmological shock waves Cosmological simulations

Cluster simulations

Equation of state for CRs
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Summary

Summary

@ Understanding non-thermal processes is crucial for using
clusters as cosmological probes (high-z scaling relations).
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Summary

Summary

@ Understanding non-thermal processes is crucial for using
clusters as cosmological probes (high-z scaling relations).

@ Radio halos might be of hadronic origin as our simulations
suggests.
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Summary

Summary

@ Understanding non-thermal processes is crucial for using
clusters as cosmological probes (high-z scaling relations).

@ Radio halos might be of hadronic origin as our simulations
suggests.

@ Huge potential and predictive power of cosmological CR
simulations/Mach number finder — provides detailed
~-ray/radio emission maps
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Summary

Summary

@ Understanding non-thermal processes is crucial for using
clusters as cosmological probes (high-z scaling relations).

@ Radio halos might be of hadronic origin as our simulations
suggests.

@ Huge potential and predictive power of cosmological CR
simulations/Mach number finder — provides detailed
~-ray/radio emission maps

@ Outlook
e Galaxy evolution: influence on energetic feedback, star
formation, and galactic winds
e Exploring the CR influence on the absorption properties at
high redshift.
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