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M51: cosmic ray electron population

Fletcher, Beck, Berkhuijsen und Horellou, in prep.
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Observations of cluster shock waves

1E 0657-56 (“Bullet cluster”)
(NASA/SAO/CXC/M.Markevitch et al.)

Abell 3667
(Radio: Austr.TC Array. X-ray: ROSAT/PSPC.)
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Gravitational heating by shocks

The "cosmic web" today. Left: the projected gas density in a cosmological simulation.

Right: gravitationally heated intracluster medium through cosmological shock waves.
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Cosmic rays in GADGET– collaboration

The talk is based on the following papers:

Detecting shock waves in cosmological smoothed particle
hydrodynamics simulations,
Pfrommer, Springel, Enßlin, & Jubelgas
2006, MNRAS, 367, 113, astro-ph/0603483

Cosmic ray physics in calculations of cosmological structure formation
Enßlin, Pfrommer, Springel, & Jubelgas
astro-ph/0603484

Cosmic ray feedback in hydrodynamical simulations of galaxy formation
Jubelgas, Springel, Enßlin, & Pfrommer
astro-ph/0603485
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Philosophy and description

An accurate description of CRs should follow the evolution of
the spectral energy distribution of CRs as a function of time and
space, and keep track of their dynamical, non-linear coupling
with the hydrodynamics.

We seek a compromise between

capturing as many physical properties as possible

requiring as little computational resources as possible

Assumptions:

protons dominate the CR population

a momentum power-law is a typical spectrum

CR energy & particle number conservation
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Philosophy and description

CRs are coupled to the thermal gas by

magnetic fields.

We assume a single power-law CR

spectrum: momentum cutoff q,

normalization C, spectral index α

(constant).

→ determines CR energy density and

pressure uniquely

The CR spectrum can be expressed by three adiabatic invariants, which scale

only with the gas density. Non-adiabatic processes are mapped into changes

of the adiabatic constants using mass, energy and momentum conservation.
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Cosmic rays in GADGET– flowchart

Christoph Pfrommer Cosmic ray feedback in hydrodynamical simulations



Motivation
Cosmic rays and structure formation shocks

Cosmic rays in galaxy clusters

Cosmic rays in GADGET

Mach number finder
Cosmological simulations

Thermal & CR energy spectra

Kinetic energy per logarithmic momentum interval:
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Radiative cooling

Cooling of primordial gas:
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Diffusive shock acceleration – Fermi 1 mechanism

Cosmic rays gain energy ∆E/E ∝ υ1 − υ2 through bouncing back and forth

the shock front. Accounting for the loss probability ∝ υ2 of particles leaving

the shock downstream leads to power-law CR population.

log p

strong shock

10 GeV

weak shock

keV

log f
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Motivation for the Mach number finder

cosmological shocks dissipate gravitational energy into
thermal gas energy: where and when is the gas heated,
and which shocks are mainly responsible for it?

shock waves are tracers of the large scale structure and
contain information about its dynamical history (warm-hot
intergalactic medium)

shocks accelerate cosmic rays through diffusive shock
acceleration at structure formation shocks: what are the
cosmological implications of such a CR component, and
does this influence the cosmic thermal history?

simulating realistic CR distributions within galaxy clusters
provides detailed predictions for the expected radio
synchrotron and γ-ray emission
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Shock tube (CRs & gas,M = 10): thermodynamics
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Shock tube (CRs & gas): Mach number statistics
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Shock tube (th. gas): Mach number statistics
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Cosmological Mach numbers: weighted by εdiss
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Cosmological Mach numbers: weighted by εCR
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Cosmological Mach number statistics

more energy is dissipated in weak shocks internal to collapsed
structures than in external strong shocks

more energy is dissipated at later times

mean Mach number decreases with time

Christoph Pfrommer Cosmic ray feedback in hydrodynamical simulations



Motivation
Cosmic rays and structure formation shocks

Cosmic rays in galaxy clusters

Cosmic rays in GADGET

Mach number finder
Cosmological simulations

Cosmological statistics: influence of reionization

reionization epoch at zreion = 10 suppresses efficiently strong
shocks at z < zreion due to jump in sound velocity

cosmological constant causes structure formation to cease
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Radio halos as window for non-equilibrium processes
Exploring complementary methods for studying cluster formation

Each frequency window is sensitive to different processes and
cluster properties:

optical: gravitational lensing of background galaxies, galaxy velocity
dispersion measure gravitational mass

X-ray: thermal plasma emission, FX ∝ n2
th

√
Tth → thermal gas with

abundances, cluster potential, substructure

Sunyaev-Zel’dovich effect: IC upscattering of CMB photons by thermal
electrons, FSZ ∝ pth → cluster velocity, turbulence, high-z clusters

radio synchrotron halos: Fsy ∝ εBεCRe → magnetic fields, CR electrons,
shock waves

diffuse γ-ray emission: Fγ ∝ nthnCRp → CR protons
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Adiabatic cluster simulation: gas density
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Mass weighted temperature
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Mach number distribution weighted by εdiss
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Relative CR pressure PCR/Ptotal
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Radio halos as window for non-equilibrium processes

Coma radio halo, ν = 1.4 GHz,

largest emission diameter ∼ 3 Mpc

(2.5◦ × 2.0◦ , credit: Deiss/Effelsberg)

Coma thermal X-ray emission,

(2.7◦ × 2.5◦ , credit: ROSAT/MPE/Snowden)
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Models for radio synchrotron halos in clusters

Halo characteristics: smooth unpolarized radio emission at
scales of 3 Mpc.
Different CR electron populations:

Primary accelerated CR electrons: synchrotron/IC cooling
times too short to account for extended diffuse emission

Re-accelerated CR electrons through resonant interaction
with turbulent Alfvén waves: possibly too inefficient, no first
principle calculations (Jaffe 1977, Schlickeiser 1987, Brunetti 2001)

Hadronically produced CR electrons in inelastic collisions
of CR protons with the ambient gas (Dennison 1980, Vestrad

1982, Miniati 2001, Pfrommer 2004)
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Hadronic cosmic ray proton interaction

Christoph Pfrommer Cosmic ray feedback in hydrodynamical simulations



Motivation
Cosmic rays and structure formation shocks

Cosmic rays in galaxy clusters

Cluster radio halos
CR pressure influences SZ effect
Generic CR pressure profile

Energetically preferred CR pressure profiles
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Compton y parameter in radiative cluster simulation
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Compton y difference map: yCR − yth
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Simulated CBI observation of yCR − yth (with Sievers & Bond)
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Pressure profiles with and without CRs

10 100 1000
R [ h-1 kpc ]

0.001

0.010

0.100

1.000

10.000

100.000
P

C
R

, P
th

 [C
od

e 
un

its
]

Christoph Pfrommer Cosmic ray feedback in hydrodynamical simulations



Motivation
Cosmic rays and structure formation shocks

Cosmic rays in galaxy clusters

Cluster radio halos
CR pressure influences SZ effect
Generic CR pressure profile

Phase-space diagram of radiative cluster simulation
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Preliminary emerging picture

Importance of central CR pressure relative to the gas pressure
seems to depend on subtle interplay of the following effects:

Presence of well developed cool core region

Violent merger history of the cluster→ resulting flat
effective spectral index of CRs

Cluster mass: ratio of CR-to-thermal cooling times
changes with the cluster’s virial temperature
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Non-radiative simulation: entropy profile
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Radiative simulation: entropy profile
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Radiative simulation: Schwazschild criterion
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Cluster profile instable with respect to convection→ effective mixing?
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Generic CR pressure profile
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Summary

Understanding non-thermal processes is crucial for using
clusters as cosmological probes (high-z scaling relations).

Radio halos might be of hadronic origin as our simulations
suggests→ tracer of structure formation

Dynamical CR feedback influences Sunyaev-Zel’dovic
effect

Outlook
Galaxy evolution: CRs might influence energetic feedback,
galactic winds, and disk galaxy formation
Huge potential and predictive power of cosmological CR
simulations/Mach number finder→ provides detailed
γ-ray/radio emission maps
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