Magnetic dynamo in galaxies and the origin of the far-infrared-radio correlation

Christoph Pfrommer

in collaboration with

M. Werhahn², R. Pakmor², P. Girichidis³, C. Simpson⁴

¹AIP Potsdam, ²MPA Garching, ³U of Heidelberg, ⁴Argonne National Lab

Building Galaxies from Scratch, Vienna, Feb 2024

□▶ ◀圖▶ ◀臺▶ ◀臺▶ 臺 ∽의()

Outline

- Galactic magnetic dynamos
 - Magnetic growth and saturation
 - Identifying main growth phases
 - Small-scale dynamo
- Cosmic rays and radio emission
 - Steady-state modeling and cosmic rays
 - Far-infrared—radio correlation
 - Radio spectra

Origin and growth of magnetic fields

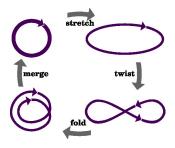
The general picture:

 Origin. Magnetic fields are generated by 1. electric currents sourced by a phase transition in the early universe or 2. by the Biermann battery

Origin and growth of magnetic fields

The general picture:

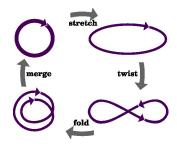
- Origin. Magnetic fields are generated by 1. electric currents sourced by a phase transition in the early universe or 2. by the Biermann battery
- Growth. A small-scale (fluctuating)
 dynamo is an MHD process, in which
 the kinetic (turbulent) energy is
 converted into magnetic energy: the
 mechanism relies on magnetic fields to
 become stronger when the field lines are
 stretched



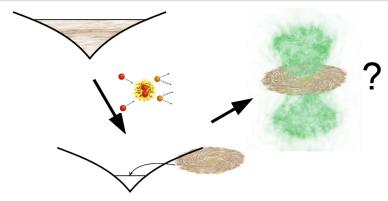
Origin and growth of magnetic fields

The general picture:

- Origin. Magnetic fields are generated by 1. electric currents sourced by a phase transition in the early universe or 2. by the Biermann battery
- Growth. A small-scale (fluctuating)
 dynamo is an MHD process, in which
 the kinetic (turbulent) energy is
 converted into magnetic energy: the
 mechanism relies on magnetic fields to
 become stronger when the field lines are
 stretched
- Saturation. Field growth stops at a sizeable fraction of the turbulent energy when magnetic forces become strong enough to resist the stretching and folding motions



Galaxy simulations with cosmic rays

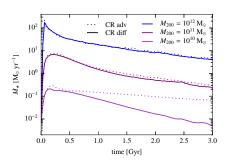


CP, Werhahn, Pakmor, Girichidis, Simpson (2022)

Simulating radio synchrotron emission in star-forming galaxies: small-scale magnetic dynamo and the origin of the far-infrared-radio correlation

MHD + cosmic ray advection + diffusion: $\left\{10^{10},10^{11},3\times10^{11},10^{12}\right\}\ M_{\odot}$

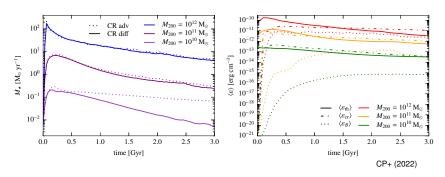
Time evolution of SFR and energy densities



CP+ (2022)

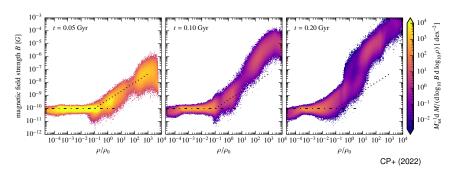
 cosmic ray (CR) pressure feedback suppresses SFR more in smaller galaxies

Time evolution of SFR and energy densities



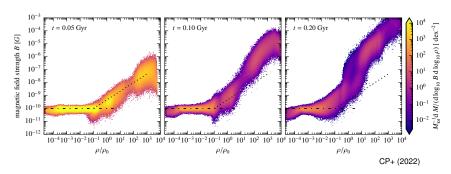
- cosmic ray (CR) pressure feedback suppresses SFR more in smaller galaxies
- energy budget in disks is dominated by CR pressure
- magnetic growth faster in Milky Way galaxies than in dwarfs

Identifying different growth phases



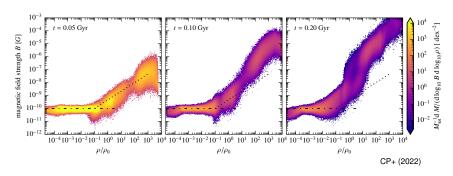
• 1st phase: adiabatic growth with $B \propto \rho^{2/3}$ (isotropic collapse)

Identifying different growth phases



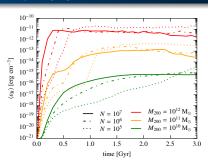
- 1st phase: adiabatic growth with $B \propto \rho^{2/3}$ (isotropic collapse)
- 2^{nd} phase: additional growth at high density ρ with small dynamical times $t_{\rm dyn} \sim (G\rho)^{-1/2}$

Identifying different growth phases



- 1st phase: adiabatic growth with $B \propto \rho^{2/3}$ (isotropic collapse)
- 2^{nd} phase: additional growth at high density ρ with small dynamical times $t_{\rm dyn} \sim (G\rho)^{-1/2}$
- 3rd phase: growth migrates to lower ρ on larger scales $\propto \rho^{-1/3}$

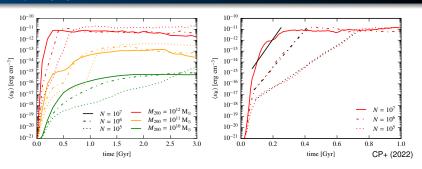
Studying growth rate with numerical resolution



CP+ (2022)

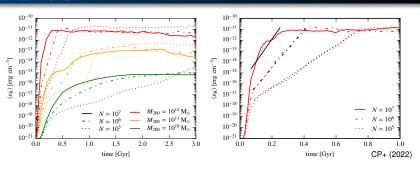
• faster magnetic growth in higher resolution simulations and larger halos, numerical convergence for $N \gtrsim 10^6$

Studying growth rate with numerical resolution



- faster magnetic growth in higher resolution simulations and larger halos, numerical convergence for $N \gtrsim 10^6$
- 1st phase: adiabatic growth (independent of resolution)

Studying growth rate with numerical resolution

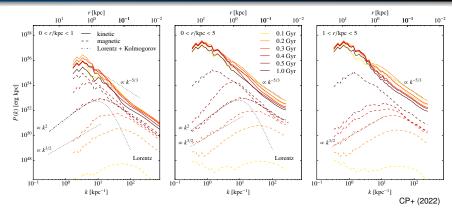


- faster magnetic growth in higher resolution simulations and larger halos, numerical convergence for $N \gtrsim 10^6$
- 1st phase: adiabatic growth (independent of resolution)
- 2nd phase: small-scale dynamo with resolution-dep. growth rate

$$\Gamma = \frac{\mathcal{V}}{\mathcal{L}} \, \text{Re}_{\text{num}}^{1/2}, \quad \text{Re}_{\text{num}} = \frac{\mathcal{L}\mathcal{V}}{\nu_{\text{num}}} = \frac{3\mathcal{L}\mathcal{V}}{\textit{d}_{\text{cell}} \, \textit{v}_{\text{th}}}$$

Kinetic and magnetic power spectra

Fluctuating small-scale dynamo in different analysis regions



- $E_B(k)$ superposition of form factor and turbulent spectrum
- pure turbulent spectrum outside steep central *B* profile

Steady-state cosmic ray spectra

solve the steady-state equation in every cell for each CR population:

$$\frac{N(E)}{\tau_{\rm esc}} - \frac{\mathrm{d}}{\mathrm{d}E} \left[N(E)b(E) \right] = Q(E)$$

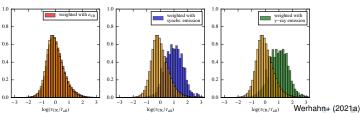
- lacktriangle protons: Coulomb, hadronic and escape losses (re-normalized to $arepsilon_{
 m cr}$)
- electrons: Coulomb, bremsstr., IC, synchrotron and escape losses
 - primaries (re-normalized using $K_{ep} = 0.02$)
 - secondaries

Steady-state cosmic ray spectra

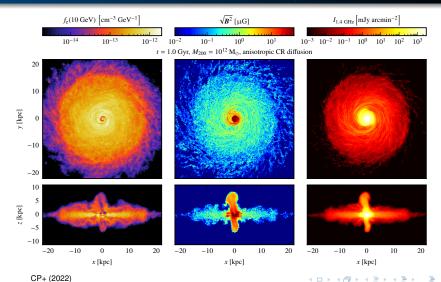
solve the steady-state equation in every cell for each CR population:

$$\frac{\textit{N}(\textit{E})}{\tau_{\rm esc}} - \frac{\mathrm{d}}{\mathrm{d}\textit{E}}\left[\textit{N}(\textit{E})\textit{b}(\textit{E})\right] = \textit{Q}(\textit{E})$$

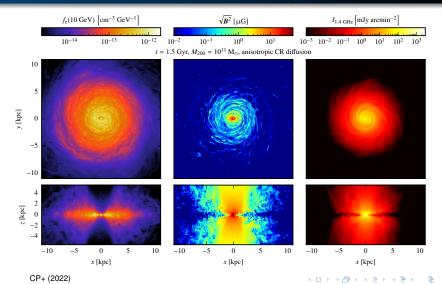
- lacktriangle protons: Coulomb, hadronic and escape losses (re-normalized to $\varepsilon_{\rm cr}$)
- electrons: Coulomb, bremsstr., IC, synchrotron and escape losses
 - primaries (re-normalized using $K_{ep} = 0.02$)
 - secondaries
- steady state assumption is fulfilled in disk and in regions dominating the non-thermal emission but not at low densities, at SNRs and in outflows



Simulated radio emission: 10¹² M_☉ halo

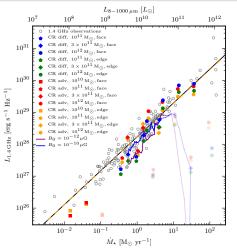


Simulated radio emission: 10¹¹ M_☉ halo



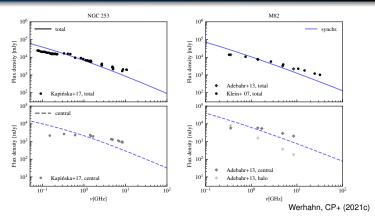
Far infra-red – radio correlation

Universal conversion: star formation \rightarrow cosmic rays \rightarrow radio



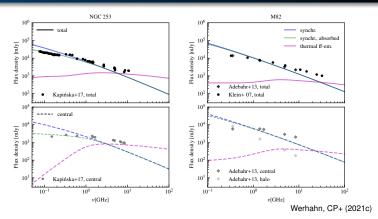


Radio-ray spectra of starburst galaxies



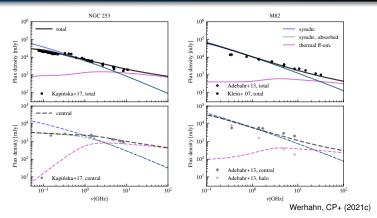
synchrotron spectra too steep (cooling + diffusion losses)

Radio-ray spectra of starburst galaxies



- synchrotron spectra too steep (cooling + diffusion losses)
- synchrotron absorption (low- ν) and thermal free-free emission (high- ν)

Radio-ray spectra of starburst galaxies



- synchrotron spectra too steep (cooling + diffusion losses)
- synchrotron absorption (low- ν) and thermal free-free emission (high- ν) required to match (total and central) spectra

Conclusions

- energy budget is dominated by CR pressure
 ⇒ CRs suppress star formation and launch galactic winds
- small-scale dynamo clearly identified via growth rates, saturation at $\varepsilon_B \sim \varepsilon_{\rm turb}$, power spectra, magnetic curvature statistics
- magnetic fields saturate close to equipartition in Milky Way centers and sub-equipartition at larger radii and in dwarfs ⇒ too simplified ISM modeling?

Conclusions

- energy budget is dominated by CR pressure
 CRs suppress star formation and launch galactic winds
- small-scale dynamo clearly identified via growth rates, saturation at $\varepsilon_B \sim \varepsilon_{\text{turb}}$, power spectra, magnetic curvature statistics
- magnetic fields saturate close to equipartition in Milky Way centers and sub-equipartition at larger radii and in dwarfs ⇒ too simplified ISM modeling?
- global L_{FIR} L_{radio} reproduced for galaxies with saturated magnetic fields, scatter due to viewing angle and CR transport
- synchrotron absorption (low-ν) and thermal free-free emission (high-ν) required to flatten cooled radio synchrotron spectra

Steady-state modeling and cosmic ray Far-infrared-radio correlation Radio spectra

PICOGAL: From Flasma KInetics to COsmological GALaxy Formation

Literature for the talk

Cosmic rays and non-thermal emission in galaxies:

- Pfrommer, Werhahn, Pakmor, Girichidis, Simpson, Simulating radio synchrotron emission in star-forming galaxies: small-scale magnetic dynamo and the origin of the far infrared-radio correlation, 2022, MNRAS, 515, 4229.
- Werhahn, Pfrommer, Girichidis, Puchwein, Pakmor, Cosmic rays and non-thermal emission in simulated galaxies. I. Electron and proton spectra explain Voyager-1 data, 2021a, MNRAS 505, 3273.
- Werhahn, Pfrommer, Girichidis, Winner, Cosmic rays and non-thermal emission in simulated galaxies. II. γ-ray maps, spectra and the far infrared-γ-ray relation, 2021b, MNRAS, 505, 3295.
- Werhahn, Pfrommer, Girichidis, Cosmic rays and non-thermal emission in simulated galaxies. III. probing cosmic ray calorimetry with radio spectra and the FIR-radio correlation, 2021c, MNRAS, 508, 4072.
- Pfrommer, Pakmor, Simpson, Springel, Simulating gamma-ray emission in star-forming galaxies, 2017, ApJL, 847, L13.

 Lorentz force density, expressed in terms of B in the MHD approximation:

$$\mathbf{f}_{L} = \frac{1}{c}\mathbf{j} \times \mathbf{B} = \frac{1}{4\pi} (\mathbf{\nabla} \times \mathbf{B}) \times \mathbf{B} = \frac{1}{4\pi} (\mathbf{B} \cdot \mathbf{\nabla}) \mathbf{B} - \frac{1}{8\pi} \mathbf{\nabla} \mathbf{B}^{2},$$

two terms on RHS are *not* magnetic curvature and pressure forces!

 Lorentz force density, expressed in terms of B in the MHD approximation:

$$\mathbf{f}_{\mathsf{L}} = rac{1}{c} \, \mathbf{j} imes \mathbf{B} = rac{1}{4\pi} \, (\mathbf{\nabla} imes \mathbf{B}) imes \mathbf{B} = rac{1}{4\pi} \, (\mathbf{B} \cdot \mathbf{\nabla}) \, \mathbf{B} - rac{1}{8\pi} \mathbf{\nabla} \mathbf{B}^2,$$

two terms on RHS are *not* magnetic curvature and pressure forces!

• define $\mathbf{B} = B\mathbf{b}$, where \mathbf{b} is the unit vector along \mathbf{b} and rewrite \mathbf{f}_{\perp} :

$$egin{aligned} oldsymbol{f}_{\mathsf{L}} &= rac{B^2}{4\pi} \left(oldsymbol{b} \cdot oldsymbol{
abla}
ight) oldsymbol{b} + rac{1}{8\pi} oldsymbol{b} \left(oldsymbol{b} \cdot oldsymbol{
abla}
ight) B^2 - rac{1}{8\pi} oldsymbol{
abla} B^2 \ &= rac{B^2}{4\pi} \left(oldsymbol{b} \cdot oldsymbol{
abla}
ight) oldsymbol{b} - rac{1}{8\pi} oldsymbol{
abla}_{\perp} B^2 \equiv oldsymbol{f}_{\mathsf{c}} + oldsymbol{f}_{\mathsf{p}}, \end{aligned}$$

where $oldsymbol{
abla}_{\perp} = (\mathbf{1} - oldsymbol{b}oldsymbol{b}) \cdot oldsymbol{
abla}$ is the perpendicular gradient

 Lorentz force density, expressed in terms of B in the MHD approximation:

$$\mathbf{f}_{\mathsf{L}} = \frac{1}{c} \mathbf{j} \times \mathbf{B} = \frac{1}{4\pi} (\mathbf{\nabla} \times \mathbf{B}) \times \mathbf{B} = \frac{1}{4\pi} (\mathbf{B} \cdot \mathbf{\nabla}) \mathbf{B} - \frac{1}{8\pi} \mathbf{\nabla} \mathbf{B}^2,$$

two terms on RHS are *not* magnetic curvature and pressure forces!

• define $\mathbf{B} = B\mathbf{b}$, where \mathbf{b} is the unit vector along \mathbf{b} and rewrite \mathbf{f}_{\perp} :

$$egin{aligned} oldsymbol{f}_{\mathsf{L}} &= rac{oldsymbol{B}^2}{4\pi} \left(oldsymbol{b} \cdot oldsymbol{
abla}
ight) oldsymbol{b} + rac{1}{8\pi} oldsymbol{b} \left(oldsymbol{b} \cdot oldsymbol{
abla}
ight) oldsymbol{B}^2 - rac{1}{8\pi} oldsymbol{
abla} oldsymbol{B}^2 \\ &= rac{oldsymbol{B}^2}{4\pi} \left(oldsymbol{b} \cdot oldsymbol{
abla}
ight) oldsymbol{b} - rac{1}{8\pi} oldsymbol{
abla}_{\perp} oldsymbol{B}^2 \equiv oldsymbol{f}_{\mathsf{c}} + oldsymbol{f}_{\mathsf{p}}, \end{aligned}$$

where $\nabla_{\perp} = (\mathbf{1} - \boldsymbol{b}\boldsymbol{b}) \cdot \nabla$ is the perpendicular gradient

 \Rightarrow f_c is the magnetic curvature force and f_p is \perp mag. pressure force

 Lorentz force density, expressed in terms of B in the MHD approximation:

$$\mathbf{f}_{\mathsf{L}} = rac{1}{c} \, \mathbf{j} imes \mathbf{B} = rac{1}{4\pi} \, (\mathbf{\nabla} imes \mathbf{B}) imes \mathbf{B} = rac{1}{4\pi} \, (\mathbf{B} \cdot \mathbf{\nabla}) \, \mathbf{B} - rac{1}{8\pi} \mathbf{\nabla} \mathbf{B}^2,$$

two terms on RHS are *not* magnetic curvature and pressure forces!

• define $\mathbf{B} = B\mathbf{b}$, where \mathbf{b} is the unit vector along \mathbf{b} and rewrite \mathbf{f}_{\perp} :

$$egin{aligned} oldsymbol{f}_{oldsymbol{oldsymbol{eta}}} &= rac{B^2}{4\pi} \left(oldsymbol{b} \cdot
abla
ight) oldsymbol{b} + rac{1}{8\pi} oldsymbol{b} \left(oldsymbol{b} \cdot
abla
ight) B^2 - rac{1}{8\pi}
abla B^2 \ &= rac{B^2}{4\pi} \left(oldsymbol{b} \cdot
abla
ight) oldsymbol{b} - rac{1}{8\pi}
abla_{oldsymbol{oldsymbol{b}}} B^2 \equiv oldsymbol{f}_{oldsymbol{c}} + oldsymbol{f}_{oldsymbol{p}}, \end{aligned}$$

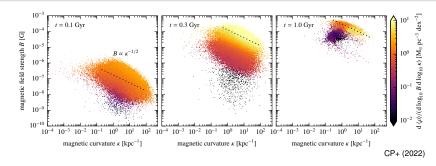
where $\nabla_{\perp} = (\mathbf{1} - \boldsymbol{b}\boldsymbol{b}) \cdot \nabla$ is the perpendicular gradient

 \Rightarrow f_c is the magnetic curvature force and f_p is \perp mag. pressure force

define a magnetic curvature:

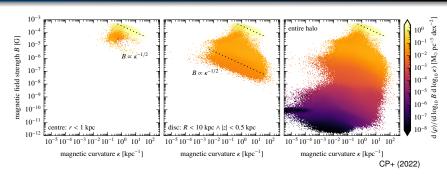
$$oldsymbol{\kappa} \equiv (oldsymbol{b} \cdot oldsymbol{
abla}) oldsymbol{b} = rac{(\mathbf{1} - oldsymbol{b} oldsymbol{b}) \cdot (oldsymbol{B} \cdot oldsymbol{
abla}) oldsymbol{B}}{B^2} = rac{4\pi \, oldsymbol{f}_{ ext{c}}}{B^2},$$

Correlating magnetic curvature to field strength – 1



- emergence of magnetic field and curvature in the galaxy centre
- panels show from left to right:
 - (i) exponential growth phase in the kinematic regime
 - (ii) growth of the magnetic coherence scale
 - (iii) saturation phase of the magnetic dynamo

Correlating magnetic curvature to field strength – 2



- separating different dynamo processes by spatial cuts during saturated phase
- superposition of different small-scale dynamos
- each dynamo grows at a different characteristic density or eddy turnover time

