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A theorist’s perspective of a galaxy cluster . . .

Galaxy clusters are dynamically evolving dark matter potential wells:

gas to the virial temperature
shock waves heat the infalling

Energy

Space

galaxy velocity dispersion

probes the DM potential
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. . . and how the observer’s Universe looks like

1E 0657-56 (“Bullet cluster”)
(NASA/SAO/CXC/M.Markevitch et al.)

Abell 3667
(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)
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Introduction and motivation
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Observational properties of galaxy clusters

Each frequency window is sensitive to different processes and
cluster properties:

optical: gravitational lensing of background galaxies, galaxy velocity
dispersion measure gravitational mass

X-ray: thermal plasma emission, FX ∝ n2
th
√

Tth → thermal gas with
abundances, cluster potential, substructure

Sunyaev-Zel’dovich effect: IC up-scattering of CMB photons by thermal
electrons, FSZ ∝ pth → thermal gas pressure, cluster velocity, high-z
clusters

radio synchrotron halos: Fsynchro ∝ εBεCRe → magnetic fields, CR
electrons, shock waves

diffuse γ-ray emission: Fγ ∝ nthnCRp → CR protons
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Introduction and motivation
Cluster simulations and cosmic ray physics
Cosmic ray pressure feedback

Why should we care about cosmic rays in clusters?
It allows us to explore complementary windows to cluster cosmology

1 Is high-precision cosmology possible using clusters?
Non-equilibrium processes such as cosmic ray pressure
and turbulence possibly modify thermal X-ray emission and
Sunyaev-Zel’dovich effect.
Cosmic ray pressure can modify the scaling relations→
bias of cosmological parameters, or increase of the
uncertainties if we marginalize over the ‘unknown cluster
physics’ (cluster self-calibration)

2 What can we learn from non-thermal cluster emission?
Estimating the cosmic ray pressure contribution.
Constructing a ‘gold sample’ for cosmology using
orthogonal information on the dynamical cluster activity.
Fundamental physics: diffusive shock acceleration, large
scale magnetic fields, and turbulence.
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Radiative simulations – flowchart
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Radiative simulations with cosmic ray (CR) physics
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Introduction and motivation
Cluster simulations and cosmic ray physics
Cosmic ray pressure feedback

Radiative simulations with extended CR physics
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Philosophy and description

An accurate description of CRs should follow the evolution of
the spectral energy distribution of CRs as a function of time and
space, and keep track of their dynamical, non-linear coupling
with the hydrodynamics.

We seek a compromise between
capturing as many physical properties as possible
requiring as little computational resources as necessary

Assumptions:
protons dominate the CR population
a momentum power-law is a typical spectrum
CR energy & particle number conservation
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CR spectral description

p = Pp/mp c

f (p) = dN
dp dV = C p−αθ(p − q)

q(ρ) =
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ρ
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) 1
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)
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Thermal & CR energy spectra

Kinetic energy per logarithmic momentum interval:
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Cooling time scales of CR protons

Cooling of primordial gas:
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Introduction and motivation
Cluster simulations and cosmic ray physics
Cosmic ray pressure feedback

Radiative simulations with CR physics
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Cluster simulations and cosmic ray physics
Cosmic ray pressure feedback

Diffusive shock acceleration – Fermi 1 mechanism

Spectral index depends on the Mach number of the shock,
M = υshock/cs:

log p

strong shock

10 GeV

weak shock

keV

log f
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Radiative cool core cluster simulation: gas density
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Mass weighted temperature
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Mach number distribution weighted by εdiss
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Mach number distribution weighted by εCR,inj
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Mach number distribution weighted by εCR,inj(q > 30)
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CR pressure PCR
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Relative CR pressure PCR/Ptotal
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Thermal X-ray emission
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Difference map of SX : SX,CR − SX,th
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Compton y parameter in radiative cluster simulation
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Compton y difference map: yCR − yth
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Cosmic rays in galaxy clusters
Unified model of radio halos and relics

Gamma-ray emission from clusters

Radio emission from primary electrons
Hadronically produced radio emission
Towards a holistic view of cluster radio emission

Non-thermal emission from clusters
Exploring the memory of structure formation

The thermal plasma lost most information on how cosmic structure
formation proceeded due to the dissipative processes. The thermal
observables, X-ray emission and the Sunyaev-Zel’dovich effect, tell
us only very indirectly (if at all) about the cosmic history. In contrast,
non-thermal processes retain their cosmic memory since their
particle population is not in equilibrium→ cluster archaeology.

How can we read out this information about non-thermal populations? → new
era of multi-frequency experiments, e.g.:

LOFAR, GMRT, MWA: interferometric array of radio telescopes at low
frequencies (ν ' (15− 240) MHz)

Glast: international high-energy γ-ray space mission (E ' (0.1− 300)
GeV)

Imaging air Čerenkov telescopes (TeV photon energies)
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formation proceeded due to the dissipative processes. The thermal
observables, X-ray emission and the Sunyaev-Zel’dovich effect, tell
us only very indirectly (if at all) about the cosmic history. In contrast,
non-thermal processes retain their cosmic memory since their
particle population is not in equilibrium→ cluster archaeology.

How can we read out this information about non-thermal populations? → new
era of multi-frequency experiments, e.g.:

LOFAR, GMRT, MWA: interferometric array of radio telescopes at low
frequencies (ν ' (15− 240) MHz)

Glast: international high-energy γ-ray space mission (E ' (0.1− 300)
GeV)

Imaging air Čerenkov telescopes (TeV photon energies)
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Cosmic rays and radiative processes
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Radiative cool core cluster simulation: gas density
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Cosmic web: Mach number
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Radio web: primary CRe (1.4 GHz)
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Radio web: primary CRe (150 MHz)
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Radio web: primary CRe (15 MHz)
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Radio web: primary CRe (15 MHz), slower magnetic decline
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Abell 2256: giant radio relic & small halo

X-ray (red) & radio (blue, contours) fractional polarization in color

Clarke & Enßlin (2006)
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Hadronic cosmic ray proton interaction
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Cluster radio emission by hadronically produced CRe
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Previous models for giant radio halos in clusters

Radio halos show a smooth unpolarized radio emission at
Mpc-scales. How are they generated?

Primary accelerated CR electrons: synchrotron/IC cooling times
too short to account for extended diffuse emission.

Continuous in-situ acceleration of pre-existing CR electrons
either via interactions with magneto-hydrodynamic waves, or
through turbulent spectra (Jaffe 1977, Schlickeiser 1987, Brunetti
2001, Brunetti & Lazarian 2007).

Hadronically produced CR electrons in inelastic collisions of CR
protons with the ambient gas (Dennison 1980, Vestrad 1982, Miniati
2001, Pfrommer 2004).

All of these models face theoretical short-comings when comparing to
observations.

Christoph Pfrommer Cosmic Rays in Galaxy Clusters



Cosmic rays in galaxy clusters
Unified model of radio halos and relics
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Unified model of radio halos and relics

Cluster radio emission varies with dynamical stage of a cluster:

Cluster relaxes and develops cool core: radio mini-halo develops due to
hadronically produced CR electrons, magnetic fields are adiabatically
compressed (cooling gas triggers radio mode feedback of AGN that
outshines mini-halo→ selection effect).

Cluster experiences major merger: two leading shock waves are
produced that become stronger as they break at the shallow peripheral
cluster potential→ shock-acceleration of primary electrons and
development of radio relics.

Generation of morphologically complex network of virializing shock
waves. Lower sound speed in the cluster outskirts lead to strong shocks
→ irregular distribution of primary electrons, MHD turbulence amplifies
magnetic fields.

Giant radio halo develops due to (1) boost of the hadronically generated
radio emission in the center (2) irregular radio ‘gischt’ emission in the
cluster outskirts.
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Radio gischt: primary CRe (150 MHz)
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Radio gischt + central hadronic halo = giant radio halo
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Giant radio halo profile
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Giant radio halo vs. mini-halo
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Radio relics + halos: spectral index
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Low-frequency radio emission from clusters
Window into current and past structure formation

Our unified model accounts for . . .

correlation between merging clusters and giant halos, occurrence of
mini-halos in cool core clusters

observed luminosities of halos/relics for magnetic fields derived from
Faraday rotation measurements

observed morphologies, variations, spectral and polarization properties
in radio halos/relics

How we can make use of this information:

Radio relics: produced by primary accelerated CR electrons at
formation shocks→ probes current dynamical, non-equilibrium activity
of forming structures (shocks and magnetic fields)

Central radio halos: produced by secondary CR electrons in hadronic
CR proton interactions→ tracing time-integrated non-equilibrium
activity, modulated by recent dynamical activities
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Thermal X-ray emission
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Hadronic γ-ray emission, Eγ > 100 MeV
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Inverse Compton emission, EIC > 100 MeV
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Gamma-ray scaling relations
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Scaling relation + complete sample of the brightest X-ray clusters
(HIFLUCGS)→ predictions for GLAST
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Summary

1 Characteristics of the CR pressure in clusters:
CR proton pressure traces the time integrated
non-equilibrium activities of clusters and is modulated by
recent dynamical activities.
The pressure of primary, shock-accelerated CR electrons
resembles current accretion and merging shocks in the
virial regions.

2 Unified model for the generation of giant radio halos, radio
mini-halos, and relics:

Giant radio halos are dominated in the center by secondary
synchrotron emission.
Transition to the radio emission from primary electrons in
the cluster periphery.

3 We predict GLAST to detect ∼ ten γ-ray clusters: test of
the presented scenario
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