Cosmic Rays in Clusters of Galaxies – Tuning in to the Non-Thermal Universe

Christoph Pfrommer1

in collaboration with

Torsten Enßlin2, Volker Springel2, Martin Jubelgas2, Klaus Dolag2

1Canadian Institute for Theoretical Astrophysics, Canada
2Max-Planck Institute for Astrophysics, Germany

Sep 26, 2007 / Cosmic Matter, Universität Würzburg
Outline

1. Cosmic rays in galaxy clusters
 - Introduction and motivation
 - Cluster simulations and cosmic ray physics
 - Cosmic ray pressure feedback

2. Unified model of radio halos and relics
 - Radio emission from primary electrons
 - Hadronically produced radio emission
 - Towards a holistic view of cluster radio emission

3. Gamma-ray emission from clusters
 - Gamma-ray morphology
 - Gamma-ray scaling relations
 - Predicted cluster sample for GLAST
Galaxy clusters are dynamically evolving dark matter potential wells:

- Shock waves heat the infalling gas to the virial temperature.
- Galaxy velocity dispersion probes the DM potential.
Cosmic rays in galaxy clusters
Unified model of radio halos and relics
Gamma-ray emission from clusters

Introduction and motivation
Cluster simulations and cosmic ray physics
Cosmic ray pressure feedback

...and how the observer’s Universe looks like

1E 0657-56 ("Bullet cluster")
(NASA/SAO/CXC/M.Markevitch et al.)

Abell 3667
(radio: Johnston-Hollitt. X-ray: ROSAT/PSPC.)

Christoph Pfrommer
Cosmic Rays in Galaxy Clusters
Each frequency window is sensitive to different processes and cluster properties:

- **optical**: gravitational lensing of background galaxies, galaxy velocity dispersion measure gravitational mass
- **X-ray**: thermal plasma emission, $F_X \propto n_{th}^2 \sqrt{T_{th}} \rightarrow$ thermal gas with abundances, cluster potential, substructure
- **Sunyaev-Zel’dovitch effect**: IC up-scattering of CMB photons by thermal electrons, $F_{SZ} \propto p_{th} \rightarrow$ thermal gas pressure, cluster velocity, high-z clusters
- **radio synchrotron halos**: $F_{\text{synchro}} \propto \varepsilon_B \varepsilon_{\text{CR e}} \rightarrow$ magnetic fields, CR electrons, shock waves
- **diffuse γ-ray emission**: $F_{\gamma} \propto n_{th} n_{\text{CR p}} \rightarrow$ CR protons
Each frequency window is sensitive to different processes and cluster properties:

- **optical**: gravitational lensing of background galaxies, galaxy velocity dispersion measure gravitational mass

- X-ray: thermal plasma emission, $F_X \propto n_{th}^2 \sqrt{T_{th}} \rightarrow$ thermal gas with abundances, cluster potential, substructure

- Sunyaev-Zel’dovich effect: IC up-scattering of CMB photons by thermal electrons, $F_{SZ} \propto p_{th} \rightarrow$ thermal gas pressure, cluster velocity, high-z clusters

- radio synchrotron halos: $F_{\text{synchro}} \propto \epsilon_B \epsilon_{CR_e} \rightarrow$ magnetic fields, CR electrons, shock waves

- diffuse γ-ray emission: $F_\gamma \propto n_{th} n_{CR_p} \rightarrow$ CR protons
Each frequency window is sensitive to different processes and cluster properties:

- **Optical**: gravitational lensing of background galaxies, galaxy velocity dispersion measure gravitational mass
- **X-ray**: thermal plasma emission, $F_X \propto n_{th}^2 \sqrt{T_{th}} \rightarrow$ thermal gas with abundances, cluster potential, substructure
- **Sunyaev-Zel’dovich effect**: IC up-scattering of CMB photons by thermal electrons, $F_{SZ} \propto p_{th} \rightarrow$ thermal gas pressure, cluster velocity, high-z clusters
- **Radio synchrotron halos**: $F_{\text{synchro}} \propto \varepsilon_B \varepsilon_{\text{CR} e} \rightarrow$ magnetic fields, CR electrons, shock waves
- **Diffuse γ-ray emission**: $F_\gamma \propto n_{th} n_{\text{CR} p} \rightarrow$ CR protons
Each frequency window is sensitive to different processes and cluster properties:

- **optical**: gravitational lensing of background galaxies, galaxy velocity dispersion measure gravitational mass
- **X-ray**: thermal plasma emission, $F_X \propto n_{\text{th}}^2 \sqrt{T_{\text{th}}} \rightarrow$ thermal gas with abundances, cluster potential, substructure
- **Sunyaev-Zel’dovich effect**: IC up-scattering of CMB photons by thermal electrons, $F_{\text{SZ}} \propto p_{\text{th}} \rightarrow$ thermal gas pressure, cluster velocity, high-z clusters
- **radio synchrotron halos**: $F_{\text{synchro}} \propto \varepsilon_B \varepsilon_{\text{CR}e} \rightarrow$ magnetic fields, CR electrons, shock waves
- **diffuse γ-ray emission**: $F_{\gamma} \propto n_{\text{th}} n_{\text{CRp}} \rightarrow$ CR protons
Why should we care about cosmic rays in clusters?
It allows us to explore complementary windows to cluster cosmology

1. Is high-precision cosmology possible using clusters?
 - Non-equilibrium processes such as cosmic ray pressure and turbulence possibly modify thermal X-ray emission and Sunyaev-Zel’dovich effect.
 - Cosmic ray pressure can modify the scaling relations \(\rightarrow\) bias of cosmological parameters, or increase of the uncertainties if we marginalize over the ‘unknown cluster physics’ (cluster self-calibration)

2. What can we learn from non-thermal cluster emission?
 - Estimating the cosmic ray pressure contribution.
 - Constructing a ‘gold sample’ for cosmology using orthogonal information on the dynamical cluster activity.
 - Fundamental physics: diffusive shock acceleration, large scale magnetic fields, and turbulence.
Why should we care about cosmic rays in clusters?
It allows us to explore complementary windows to cluster cosmology

1. Is high-precision cosmology possible using clusters?
 - Non-equilibrium processes such as cosmic ray pressure and turbulence possibly modify thermal X-ray emission and Sunyaev-Zel’dovich effect.
 - Cosmic ray pressure can modify the scaling relations → bias of cosmological parameters, or increase of the uncertainties if we marginalize over the ‘unknown cluster physics’ (cluster self-calibration)

2. What can we learn from non-thermal cluster emission?
 - Estimating the cosmic ray pressure contribution.
 - Constructing a ‘gold sample’ for cosmology using orthogonal information on the dynamical cluster activity.
 - Fundamental physics: diffusive shock acceleration, large scale magnetic fields, and turbulence.
Radiative simulations with cosmic ray (CR) physics

Cluster observables:
- Sunyaev-Zeldovich effect
- X-ray emission
- Galaxy spectra
- Radio synchrotron
- Gamma-ray emission

Physical processes in clusters:
- Radiative cooling
- Stellar populations
- Supernovae
- Cosmic ray energy
- Hadronic losses
- Coulomb losses

Loss processes: red
Gain processes: green
Observables: yellow
Populations: blue
Radiative simulations with extended CR physics

Cluster observables:
- Sunyaev-Zeldovich effect
- X-ray emission
- Galaxy spectra
- Radio synchrotron
- Gamma-ray emission

Physical processes in clusters:
- Thermal energy
- Radiative cooling
- Stellar populations
- Supernovae
- Shocks
- AGN
- Coulomb losses
- Cosmic ray energy
- Hadronic losses
- CR diffusion
- Heat conduction

Loss processes: Red
Gain processes: Green
Observables: Yellow
Populations: Blue

Christoph Pfrommer
Cosmic Rays in Galaxy Clusters
Philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as necessary

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation
Philosophy and description

An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as necessary

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation
An accurate description of CRs should follow the evolution of the spectral energy distribution of CRs as a function of time and space, and keep track of their dynamical, non-linear coupling with the hydrodynamics.

We seek a compromise between

- capturing as many physical properties as possible
- requiring as little computational resources as necessary

Assumptions:

- protons dominate the CR population
- a momentum power-law is a typical spectrum
- CR energy & particle number conservation
CR spectral description

\[f(p) = \frac{dN}{dp \, dV} = C \, p^{-\alpha} \theta(p - q) \]

\[q(\rho) = \left(\frac{\rho}{\rho_0} \right)^{\frac{1}{3}} \, q_0 \]

\[C(\rho) = \left(\frac{\rho}{\rho_0} \right)^{\frac{\alpha + 2}{3}} \, C_0 \]

\[n_{CR} = \int_0^\infty dp \, f(p) = \frac{C \, q^{1-\alpha}}{\alpha - 1} \]

\[P_{CR} = \frac{m_p c^2}{3} \int_0^\infty dp \, f(p) \, \beta(p) \, p \]

\[= \frac{C \, m_p c^2}{6} \, \beta^{\frac{1}{1+q^2}} \left(\frac{\alpha - 2}{2}, \frac{3-\alpha}{2} \right) \]
Kinetic energy per logarithmic momentum interval:

\[
\frac{dT_{\text{CR}}}{d\log p} = p T(p) f(p) \quad \text{in } m_p c^2
\]

- $\alpha = 2.25$
- $\alpha = 2.50$
- $\alpha = 2.75$

Graph showing the distribution of kinetic energy per logarithmic momentum interval for different values of α. The graph has a logarithmic scale for momentum (\(p\)) on the x-axis and a linear scale for energy density (\(T_{\text{CR}}\)) on the y-axis.
Cooling time scales of CR protons

Cooling of primordial gas:

\[\tau_{\text{cool}} \ [\text{Gyr}] \]

\[n = 0.01 \text{ cm}^{-3} \]

\[T \ [\text{K}] \]

0.0001
0.0010
0.0100
0.1000
1.0000
10.0000

Cooling of cosmic rays:

\[\tau_{\text{cool}} \ [\text{Gyr}] \]

\[n = 0.01 \text{ cm}^{-3} \]

\[q \]

0.01
0.10
1.00
10.00
100.00

Christoph Pfrommer
Cosmic Rays in Galaxy Clusters
Diffusive shock acceleration – Fermi 1 mechanism

Spectral index depends on the Mach number of the shock,
\[M = \frac{v_{\text{shock}}}{c_s} \]

- Strong shock
- Weak shock

\[
\log p \quad \log f
\]

- keV
- 10 GeV
Radiative cool core cluster simulation: gas density

\[\langle 1 + \delta_{\text{gas}} \rangle \]
Mass weighted temperature

\[\langle T \rho_{\text{gas}} \rangle / \langle \rho_{\text{gas}} \rangle \,[\text{K}] \]
Mach number distribution weighted by $\varepsilon_{\text{diss}}$
Mach number distribution weighted by $\varepsilon_{\text{CR, inj}}$
Mach number distribution weighted by $\varepsilon_{\text{CR,inj}}(q > 30)$
Cosmic rays in galaxy clusters
Unified model of radio halos and relics
Gamma-ray emission from clusters

Introduction and motivation
Cluster simulations and cosmic ray physics
Cosmic ray pressure feedback

CR pressure P_{CR}
Cosmic rays in galaxy clusters
Unified model of radio halos and relics
Gamma-ray emission from clusters

Introduction and motivation
Cluster simulations and cosmic ray physics
Cosmic ray pressure feedback

Relative CR pressure $P_{\text{CR}}/P_{\text{total}}$

$\langle P_{\text{CR}}/P_{\text{tot}}\rho_{\text{gas}} \rangle/\langle \rho_{\text{gas}} \rangle$
Relative CR pressure $P_{\text{CR}}/P_{\text{total}}$

\[\langle P_{\text{CR}}/P_{\text{tot}} \rho_{\text{gas}} \rangle/\langle \rho_{\text{gas}} \rangle \]
Thermal X-ray emission

large merging cluster, $M_{\text{vir}} \approx 10^{15} M_{\odot}/h$

small cool core cluster, $M_{\text{vir}} \approx 10^{14} M_{\odot}/h$
large merging cluster, $M_{\text{vir}} \approx 10^{15} M_{\odot} / h$
→ contributes to the scatter in the $M - L_X$ scaling relation

cool core cluster, $M_{\text{vir}} \approx 10^{14} M_{\odot} / h$
→ systematic increase of L_X for small cool core clusters
Cosmic rays in galaxy clusters
Unified model of radio halos and relics
Gamma-ray emission from clusters

Compton y parameter in radiative cluster simulation

large merging cluster, $M_{\text{vir}} \simeq 10^{15} M_\odot/h$

small cool core cluster, $M_{\text{vir}} \simeq 10^{14} M_\odot/h$
Cosmic rays in galaxy clusters

Unified model of radio halos and relics
Gamma-ray emission from clusters

Introduction and motivation
Cluster simulations and cosmic ray physics
Cosmic ray pressure feedback

Compton y difference map: $y_{CR} - y_{th}$

large merging cluster, $M_{vir} \approx 10^{15} M_\odot / h$

small cool core cluster, $M_{vir} \approx 10^{14} M_\odot / h$
The thermal plasma lost most information on how cosmic structure formation proceeded due to the dissipative processes. The thermal observables, X-ray emission and the Sunyaev-Zel’dovich effect, tell us only very indirectly (if at all) about the cosmic history. In contrast, non-thermal processes retain their cosmic memory since their particle population is not in equilibrium → cluster archaeology.

How can we read out this information about non-thermal populations? → new era of multi-frequency experiments, e.g.:

- **LOFAR, GMRT, MWA**: interferometric array of radio telescopes at low frequencies ($\nu \approx (15 - 240) \text{ MHz}$)
- **Glast**: international high-energy γ-ray space mission ($E \approx (0.1 - 300) \text{ GeV}$)
- **Imaging air Čerenkov telescopes**: (TeV photon energies)
The thermal plasma lost most information on how cosmic structure formation proceeded due to the dissipative processes. The thermal observables, X-ray emission and the Sunyaev-Zel’dovich effect, tell us only very indirectly (if at all) about the cosmic history. In contrast, non-thermal processes retain their cosmic memory since their particle population is not in equilibrium → cluster archaeology.

How can we read out this information about non-thermal populations? → new era of multi-frequency experiments, e.g.:

- **LOFAR, GMRT, MWA**: interferometric array of radio telescopes at low frequencies ($\nu \sim (15 - 240) \text{ MHz}$)
- **Glast**: international high-energy γ-ray space mission ($E \sim (0.1 - 300) \text{ GeV}$)
- Imaging air Čerenkov telescopes (TeV photon energies)
Cosmic rays and radiative processes

Relativistic populations and radiative processes in clusters:

Energy sources:
- Kinetic energy from structure formation
- Supernovae & active galactic nuclei

Plasma processes:
- Turbulent cascade & plasma waves
- Shock waves
Cosmic rays in galaxy clusters
Unified model of radio halos and relics
Gamma-ray emission from clusters

Cosmic rays and radiative processes

Relativistic populations and radiative processes in clusters:

Energy sources:
- kinetic energy from structure formation
- supernovae & active galactic nuclei

Plasma processes:
- turbulent cascade & plasma waves
- shock waves

Relativistic particle pop.:
- re-acceleration CR electrons
- primary CR electrons
- secondary CR electrons

CR protons
hadronic reaction
Cosmic rays and radiative processes

Relativistic populations and radiative processes in clusters:

Energy sources:
- Kinetic energy from structure formation
- Supernovae & active galactic nuclei

Plasma processes:
- Turbulent cascade & plasma waves
- Shock waves
- CR protons
 - Hadronic reaction

Relativistic particle pop.:
- Re-acceleration
 - CR electrons
- Primary CR electrons
- Secondary CR electrons

Observational diagnostics:
- Radio synchrotron emission
- IC: hard X-ray & gamma-ray emission
Cosmic rays and radiative processes

Relativistic populations and radiative processes in clusters:

Energy sources:
- kinetic energy from structure formation
- supernovae & active galactic nuclei

Plasma processes:
- turbulent cascade & plasma waves
- shock waves
- CR protons

Relativistic particle pop.:
- re-acceleration CR electrons
- primary CR electrons
- secondary CR electrons
- π^0

Observational diagnostics:
- radio synchrotron emission
- IC: hard X-ray & gamma-ray emission
- gamma-ray emission
Radiative cool core cluster simulation: gas density

\[\langle 1 + \delta_{\text{gas}} \rangle \]

Christoph Pfrommer

Cosmic Rays in Galaxy Clusters
Cosmic rays in galaxy clusters
Unified model of radio halos and relics
Gamma-ray emission from clusters
Radio emission from primary electrons
Hadronically produced radio emission
Towards a holistic view of cluster radio emission

Cosmic web: Mach number

\[\langle \dot{M}_{\text{diss}} / \langle \dot{\varepsilon}_{\text{diss}} \rangle \]
Radio web: primary CR (1.4 GHz)

\[S_{\text{\nu,primary}} \left[\text{mJy arcmin}^{-2} h_{70}^{-2} \right] \]

\[x [h^{-1} \text{Mpc}] \quad y [h^{-1} \text{Mpc}] \]

\[10^{-8} \quad 10^{-6} \quad 10^{-4} \quad 10^{-2} \quad 10^{0} \]

Christoph Pfrommer
Cosmic Rays in Galaxy Clusters
Radio web: primary CRe (150 MHz)
Radio web: primary CRe (15 MHz)
Radio web: primary CRe (15 MHz), slower magnetic decline

\[S_{\nu,\text{primary}} \left[\text{mJy arcmin}^{-2} h_{70}^{-2} \right] \]

\[x [h^{-1} \text{Mpc }] \]

\[y [h^{-1} \text{Mpc}] \]
Abell 2256: giant radio relic & small halo

X-ray (red) & radio (blue, contours)

fractional polarization in color

Clarke & Enßlin (2006)
Cosmic rays and radiative processes

Relativistic populations and radiative processes in clusters:

Energy sources:
- kinetic energy from structure formation
- supernovae & active galactic nuclei

Plasma processes:
- turbulent cascade & plasma waves
- shock waves
- CR protons

Relativistic particle pop.:
- re-acceleration CR electrons
- primary CR electrons
- secondary CR electrons

Observational diagnostics:
- radio synchrotron emission
- IC: hard X-ray & gamma-ray emission
- gamma-ray emission

Christoph Pfrommer
Cosmic Rays in Galaxy Clusters
Hadronic cosmic ray proton interaction

Cosmic rays in galaxy clusters
Unified model of radio halos and relics
Gamma-ray emission from clusters
Radio emission from primary electrons
Hadronically produced radio emission
Towards a holistic view of cluster radio emission

Christoph Pfrommer
Cosmic Rays in Galaxy Clusters
Cluster radio emission by hadronically produced CRe

![Graph showing radio emission intensity as a function of position in a galaxy cluster. The intensity is plotted on a logarithmic scale ranging from 10^{-15} to 10^{0} mJy arcmin$^{-2}$. The x-axis represents the position in h^{-1} Mpc, and the y-axis also represents position in h^{-1} Mpc. The intensity increases from blue to red, with red indicating higher intensity.]
Previous models for giant radio halos in clusters

Radio halos show a smooth unpolarized radio emission at Mpc-scales. How are they generated?

- **Primary accelerated CR electrons**: synchrotron/IC cooling times too short to account for extended diffuse emission.

- **Continuous in-situ acceleration** of pre-existing CR electrons either via interactions with magneto-hydrodynamic waves, or through turbulent spectra (Jaffe 1977, Schlickeiser 1987, Brunetti 2001, Brunetti & Lazarian 2007).

All of these models face theoretical short-comings when comparing to observations.
Cluster radio emission varies with dynamical stage of a cluster:

- **Cluster relaxes and develops cool core:** radio mini-halo develops due to hadronically produced CR electrons, magnetic fields are adiabatically compressed (cooling gas triggers radio mode feedback of AGN that outshines mini-halo → selection effect).

- **Cluster experiences major merger:** two leading shock waves are produced that become stronger as they break at the shallow peripheral cluster potential → shock-acceleration of primary electrons and development of radio relics.

- **Generation of morphologically complex network of virializing shock waves.** Lower sound speed in the cluster outskirts lead to strong shocks → irregular distribution of primary electrons, MHD turbulence amplifies magnetic fields.

- **Giant radio halo develops** due to (1) boost of the hadronically generated radio emission in the center (2) irregular radio ‘gischt’ emission in the cluster outskirts.
Cluster radio emission varies with dynamical stage of a cluster:

- Cluster relaxes and develops cool core: radio mini-halo develops due to hadronically produced CR electrons, magnetic fields are adiabatically compressed (cooling gas triggers radio mode feedback of AGN that outshines mini-halo → selection effect).

- Cluster experiences major merger: two leading shock waves are produced that become stronger as they break at the shallow peripheral cluster potential → shock-acceleration of primary electrons and development of radio relics.

- Generation of morphologically complex network of virializing shock waves. Lower sound speed in the cluster outskirts lead to strong shocks → irregular distribution of primary electrons, MHD turbulence amplifies magnetic fields.

- Giant radio halo develops due to (1) boost of the hadronically generated radio emission in the center (2) irregular radio ‘gischt’ emission in the cluster outskirts.
Cosmic rays in galaxy clusters
Unified model of radio halos and relics
Gamma-ray emission from clusters
Radio emission from primary electrons
Hadronically produced radio emission
Towards a holistic view of cluster radio emission

Unified model of radio halos and relics

Cluster radio emission varies with dynamical stage of a cluster:

- Cluster relaxes and develops cool core: radio mini-halo develops due to hadronically produced CR electrons, magnetic fields are adiabatically compressed (cooling gas triggers radio mode feedback of AGN that outshines mini-halo → selection effect).

- Cluster experiences major merger: two leading shock waves are produced that become stronger as they break at the shallow peripheral cluster potential → shock-acceleration of primary electrons and development of radio relics.

- Generation of morphologically complex network of virializing shock waves. Lower sound speed in the cluster outskirts lead to strong shocks → irregular distribution of primary electrons, MHD turbulence amplifies magnetic fields.

- Giant radio halo develops due to (1) boost of the hadronically generated radio emission in the center (2) irregular radio ‘gischt’ emission in the cluster outskirts.

Christoph Pfrommer
Cosmic Rays in Galaxy Clusters

CITA–ICAT
Radio gischt: primary CRe (150 MHz)
Radio gischt + central hadronic halo = giant radio halo

\[S_{\nu, \text{total}} \left[\text{mJy arcmin}^{-2} h_{70}^{3/2} \right] \]

\[y \left[h^{-1} \text{Mpc} \right] \]
\[x \left[h^{-1} \text{Mpc} \right] \]
Giant radio halo profile

- Merger, $10^{15} M_{\odot}/h$
- Combined radio
- Primary radio
- Secondary radio

$S_{1.4\,\text{GHz}}$ [mJy arcmin$^{-2} h_{70}^{-3}$]

$x = R / R_{\text{vir}}$

- 10^{-4}
- 10^{-2}
- 10^0
- 10^2

Christoph Pfrommer

Cosmic Rays in Galaxy Clusters
Giant radio halo vs. mini-halo

$S_{1.4\,\text{GHz}}$ [mJy arcmin$^{-2}$ h_{70}^{-3}]

$x = R / R_{\text{vir}}$

merger, $10^{15} M_{\odot}/h$

CC, $10^{15} M_{\odot}/h$
Radio relics + halos: spectral index

\[\alpha \nu \]

\[x \left[h^{-1} \text{Mpc} \right] \]

\[y \left[h^{-1} \text{Mpc} \right] \]

Christoph Pfrommer
Cosmic Rays in Galaxy Clusters
Low-frequency radio emission from clusters
Window into current and past structure formation

Our unified model accounts for . . .

- correlation between merging clusters and giant halos, occurrence of mini-halos in cool core clusters
- observed luminosities of halos/relics for magnetic fields derived from Faraday rotation measurements
- observed morphologies, variations, spectral and polarization properties in radio halos/relics

How we can make use of this information:

- **Radio relics**: produced by primary accelerated CR electrons at formation shocks → probes current dynamical, non-equilibrium activity of forming structures (shocks and magnetic fields)
- **Central radio halos**: produced by secondary CR electrons in hadronic CR proton interactions → tracing time-integrated non-equilibrium activity, modulated by recent dynamical activities
Cosmic rays in galaxy clusters
Unified model of radio halos and relics
Gamma-ray emission from clusters

Gamma-ray morphology
Gamma-ray scaling relations
Predicted cluster sample for GLAST

Thermal X-ray emission

Christoph Pfrommer
Cosmic Rays in Galaxy Clusters
Hadronic γ-ray emission, $E_\gamma > 100$ MeV
Inverse Compton emission, $E_{IC} > 100$ MeV
Gamma-ray scaling relations

Scaling relation + complete sample of the brightest X-ray clusters (HIFLUCGS) → predictions for GLAST

\[L(\gamma; E_\gamma > 100 \text{ MeV}) \left[\gamma \text{s}^{-1} h_{70} \right] \]

\[S_1, B_0 = 10 \mu \text{G}, \alpha_B = 0.5 \]

\[S_2, B_0 = 10 \mu \text{G}, \alpha_B = 0.5 \]
Cosmic rays in galaxy clusters
Unified model of radio halos and relics
Gamma-ray emission from clusters

Predicted cluster sample for GLAST

- Ophiuchus, Fornax
- Coma
- A3627
- Perseus, Centaurus, A1060
- M49
- 3C129
- NGC4636
- A0754
- AWM7
- Triangulum
- A0754
- Fγ [γ cm⁻² s⁻¹]

Christoph Pfrommer
Cosmic Rays in Galaxy Clusters
Summary

1. Characteristics of the CR pressure in clusters:
 - CR proton pressure traces the time integrated non-equilibrium activities of clusters and is modulated by recent dynamical activities.
 - The pressure of primary, shock-accelerated CR electrons resembles current accretion and merging shocks in the virial regions.

2. Unified model for the generation of giant radio halos, radio mini-halos, and relics:
 - Giant radio halos are dominated in the center by secondary synchrotron emission.
 - Transition to the radio emission from primary electrons in the cluster periphery.

3. We predict GLAST to detect \sim ten γ-ray clusters: test of the presented scenario