The Physics and Cosmology of TeV Blazars

Christoph Pfrommer

in collaboration with

Avery E. Broderick, Phil Chang, Ewald Puchwein, Volker Springel

1Heidelberg Institute for Theoretical Studies, Germany

Jul 10, 2014 / Astrophysics Seminar Würzburg
Motivation

A new link between high-energy astrophysics and cosmological structure formation

- **Introduction to Blazars**
 - active galactic nuclei (AGN)
 - propagating gamma rays
 - plasma physics
Motivation
A new link between high-energy astrophysics and cosmological structure formation

- **Introduction to Blazars**
 - active galactic nuclei (AGN)
 - propagating gamma rays
 - plasma physics

- **Cosmological Consequences**
 - unifying blazars with AGN
 - gamma-ray background
Motivation
A new link between high-energy astrophysics and cosmological structure formation

- **Introduction to Blazars**
 - active galactic nuclei (AGN)
 - propagating gamma rays
 - plasma physics

- **Cosmological Consequences**
 - unifying blazars with AGN
 - gamma-ray background
 - thermal history of the Universe
 - Lyman-\(\alpha\) forest
 - formation of dwarf galaxies
Active galactic nucleus (AGN)

- **AGN**: compact region at the center of a galaxy, which dominates the luminosity of its electromagnetic spectrum.

- AGN emission is most likely caused by mass accretion onto a supermassive black hole and can also launch relativistic jets.

- AGNs are the most luminous sources in the universe → discovery of distant objects.
Active galactic nucleus at a cosmological distance

Quasar 3C175 at $z \sim 0.8$:
jet extends 10^6 light years across

- AGN: compact region at the center of a galaxy, which dominates the luminosity of its electromagnetic spectrum.
- AGN emission is most likely caused by mass accretion onto a supermassive black hole and can also launch relativistic jets.
- AGNs are the most luminous sources in the universe → discovery of distant objects.
Unified model of active galactic nuclei

- Relativistic jet
- Accretion disk
- Dusty torus
- Super-massive black hole

Christoph Pfrommer
The Physics and Cosmology of TeV Blazars
Unified model of active galactic nuclei

Blazar: jet aligned with line-of-sight
TeV gamma-ray observations

MAGIC

VERITAS

H.E.S.S.

Christoph Pfrommer

The Physics and Cosmology of TeV Blazars
The TeV gamma-ray sky

There are several classes of TeV sources:

- Galactic - pulsars, BH binaries, supernova remnants
- Extragalactic - mostly blazars, two starburst galaxies

VHE γ-ray Sky Map
(E > 100 GeV)

2011-01-08 - Up-to-date plot available at http://www.mpp.mpg.de/~nvagneis/sources/
Annihilation and pair production

\[e^- + e^+ \rightarrow \gamma \]

extragalactic background light (infrared, eV)
Annihilation and pair production

\(\sqrt{s} = \sqrt{2E_E \text{EBL}(1 - \cos \theta)} > 2m_e c^2 \)

extragalactic background light (infrared, eV)

\(\lambda_{\gamma\gamma} \sim (35 \ldots 700) \text{ Mpc for } z = 1 \ldots 0 \)
Inverse Compton cascades

\[\lambda_{IC} \sim \lambda_{\gamma\gamma}/1000 \]

\[\lambda_{\gamma\gamma} \sim (35 \ldots 700) \text{ Mpc for } z = 1 \ldots 0 \]
Inverse Compton cascades

\(\lambda_{IC} \sim \lambda_{\gamma\gamma}/1000 \)

\(\lambda_{\gamma\gamma} \sim (35 \ldots 700) \text{ Mpc for } z = 1 \ldots 0 \)

→ each TeV point source should also be a GeV point source!
What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray halo.
What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray halo – not seen!

Neronov & Vovk (2010)

expected cascade emission

Fermi exclusion region

TeV detections

intrinsic spectra
Inverse Compton cascades

\[\lambda_{IC} \sim \lambda_{\gamma\gamma}/1000 \]

\[\lambda_{\gamma\gamma} \sim (35 \ldots 700) \text{ Mpc for } z = 1 \ldots 0 \]
Extragalactic magnetic fields?

pair deflection in intergalactic magnetic field

GeV light (infrared, eV)

extragalactic background light (infrared, eV)

The Physics and Cosmology of TeV Blazars
Extragalactic magnetic fields?

- GeV point source diluted → weak "pair halo"
- stronger B-field implies more deflection and dilution, gamma-ray non-detection → $B \gtrsim 10^{-16} G$ – primordial fields?
Extragalactic magnetic fields?

- Problem for unified AGN model: no increase in comoving blazar density with redshift allowed (as seen in other AGNs) since otherwise, extragalactic GeV background would be overproduced!
What else could happen?

Blazars
Gamma-ray sky
Structure formation
Active galactic nuclei
Propagating γ rays
Plasma instabilities

Christoph Pfrommer
The Physics and Cosmology of TeV Blazars
Plasma instabilities

Pair plasma beam propagating through the intergalactic medium

Christoph Pfrommer

The Physics and Cosmology of TeV Blazars
Plasma instabilities

- pair beam

\begin{align*}
\text{pair beam} & \\
e^+, e^- & \quad \longrightarrow \quad \text{intergalactic medium (IGM)} \\
e^+, e^- & \quad \longrightarrow \quad p, e^- \\
e^+, e^- & \quad \longrightarrow \quad p, e^- \\
e^+, e^- & \quad \longrightarrow \quad p, e^- \\
\end{align*}

- this configuration is unstable to plasma instabilities

- characteristic frequency and length scale of the problem:

\begin{align*}
\omega_p &= \sqrt{\frac{4\pi e^2 n_e}{m_e}}, \\
\lambda_p &= \left. \frac{c}{\omega_p} \right|_{\bar{\rho}(z=0)} \sim 10^8 \text{ cm}
\end{align*}
Two-stream instability

consider wave-like perturbation in background plasma along the beam direction (Langmuir wave):

- initially homogeneous beam-\(e^-\):
 - attractive (repulsive) force by potential maxima (minima)
- \(e^-\) attain lowest velocity in potential minima \(\rightarrow\) bunching up
- \(e^+\) attain lowest velocity in potential maxima \(\rightarrow\) bunching up

\[e^+, e^- \]
Two-stream instability

consider wave-like perturbation in background plasma along the beam direction (Langmuir wave):

- beam-\(e^+/e^-\) couple in phase with the background perturbation: enhances background potential
- stronger forces on beam-\(e^+/e^-\) → positive feedback
- exponential wave-growth → instability
Two-stream instability: momentum transfer

- **Particles with** $v \gtrsim v_{\text{phase}}$:
 - Pair momentum \to plasma waves \to growing modes: instability

- **Particles with** $v \lesssim v_{\text{phase}}$:
 - Plasma wave momentum \to pairs \to Landau damping
Oblique instability

- k oblique to \mathbf{v}_{beam}: real word perturbations don’t choose “easy” alignment $= \sum$ all orientations

- oblique grows faster than two-stream: E-fields can easier deflect ultra-relativistic particles than change their parallel velocities

(Nakar, Bret & Milosavljevic 2011)
Oblique instability

- \(\mathbf{k} \) oblique to \(\mathbf{v}_{\text{beam}} \): real word perturbations don’t choose “easy” alignment = \(\sum \) all orientations

- oblique grows faster than two-stream: \(E \)-fields can easier deflect ultra-relativistic particles than change their parallel velocities

(Nakar, Bret & Milosavljevic 2011)

Bret (2009), Bret+ (2010)
consider a light beam penetrating into relatively dense plasma

maximum growth rate

\[\Gamma \sim 0.4 \gamma \frac{n_{\text{beam}}}{n_{\text{IGM}}} \omega_p \]

Broderick, Chang, C.P. (2012), also Schlickeiser+ (2012)
consider a light beam penetrating into relatively dense plasma

maximum growth rate

\[\Gamma \sim 0.4 \gamma \frac{n_{\text{beam}}}{n_{\text{IGM}}} \omega_p \]

oblique instability beats inverse Compton cooling by factor 10-100

assume that instability grows at linear rate up to saturation

Broderick, Chang, C.P. (2012), also Schlickeiser+ (2012)
TeV emission from blazars – a new paradigm

\[\gamma_{\text{TeV}} + \gamma_{\text{eV}} \rightarrow e^+ + e^- \rightarrow \{ \begin{align*}
\text{inv. Compton cascades} & \rightarrow \gamma_{\text{GeV}} \\
\text{plasma instabilities} &
\end{align*} \]
TeV emission from blazars – a new paradigm

\[\gamma_{\text{TeV}} + \gamma_{\text{eV}} \rightarrow e^+ + e^- \rightarrow \begin{cases} \text{inv. Compton cascades} & \rightarrow \gamma_{\text{GeV}} \\ \text{plasma instabilities} & \end{cases} \]

The absence of \(\gamma_{\text{GeV}} \)'s has significant implications for . . .
- intergalactic magnetic field estimates
- unified picture of TeV blazars and quasars
Implications for intergalactic magnetic fields

\[\gamma_{\text{TeV}} + \gamma_{\text{eV}} \rightarrow e^+ + e^- \rightarrow \begin{cases} \text{inv. Compton cascades} \rightarrow \gamma_{\text{GeV}} \\ \text{plasma instabilities} \end{cases} \]

- competition of rates: \(\Gamma_{\text{IC}} \) vs. \(\Gamma_{\text{oblique}} \)
- fraction of the pair energy lost to inverse-Compton on the CMB:
 \[f_{\text{IC}} = \frac{\Gamma_{\text{IC}}}{\left(\Gamma_{\text{IC}} + \Gamma_{\text{oblique}} \right)} \]
- plasma instability dominates for more luminous blazars

Broderick, Chang, C.P. (2012)
Conclusions on B-field constraints from blazar spectra

- It is thought that TeV blazar spectra might constrain IGM B-fields.
- This assumes that cooling mechanism is IC off the CMB + deflection from magnetic fields.
- Beam instabilities allow high-energy e^+/e^- pairs to self scatter and/or lose energy.
- Isotropizes the beam – no need for B-field.
- $\lesssim 1$–10% of beam energy to IC CMB photons.
Conclusions on B-field constraints from blazar spectra

- It is thought that TeV blazar spectra might constrain IGM B-fields.
- This assumes that cooling mechanism is IC off the CMB + deflection from magnetic fields.
- Beam instabilities allow high-energy e^+/e^- pairs to self scatter and/or lose energy.
- Isotropizes the beam – no need for B-field.
- $\lesssim 1$–10% of beam energy to IC CMB photons.

→ **TeV blazar spectra are not suitable to measure IGM B-fields** (if plasma instabilities saturate close to linear rate)!

Broderick, Chang, C.P. (2012), Schlickeiser, Krakau, Supsar (2013), Chang+ (in prep.)
TeV blazar luminosity density: today

- collect luminosity of all 23 TeV blazars with good spectral measurements
- account for the selection effects (sky coverage, duty cycle, galactic occultation, TeV flux limit)
- TeV blazar luminosity density is a scaled version ($\eta_B \sim 0.2\%$) of that of quasars!

Broderick, Chang, C.P. (2012)
Quasars and TeV blazars are:

- regulated by the same mechanism
- contemporaneous elements of a single AGN population: TeV-blazar activity does not lag quasar activity

Broderick, Chang, C.P. (2012)
Quasars and TeV blazars are:

- regulated by the same mechanism
- contemporaneous elements of a single AGN population: TeV-blazar activity does not lag quasar activity

→ assume that they trace each other for all redshifts!
How many TeV blazars are there?

→ use all-sky survey of the GeV gamma-ray sky:
 Fermi gamma-ray space telescope
How many TeV blazars are there?

Hopkins+ (2007)
How many TeV blazars are there?

Fermi hard gamma-ray blazar counts

Hopkins+ (2007)
How many TeV blazars are there?

Hopkins+ (2007)
Redshift distribution of \textit{Fermi} hard γ-ray blazars

Broderick, C.P.+ (2013)

- 1LAC, Abdo et al. 2010
- 2LAC, Ackermann et al. 2011

...evolving hard gamma–ray blazars above the Fermi flux limit!
Redshift distribution of *Fermi* hard γ-ray blazars

\rightarrow evolving (increasing) blazar population consistent with observed declining evolution (*Fermi* flux limit)!
The Physics and Cosmology of TeV Blazars

Christoph Pfrommer

Christoph Pfrommer
The log N – log S distribution of *Fermi* hard γ-ray blazars.

→ predicted and observed flux distributions of hard *Fermi* blazars between 10 GeV and 500 GeV are indistinguishable!
How many TeV blazars are there?

Hopkins+ (2007)
TeV photon absorption by pair production

intrinsic and observed SEDs of blazars at $z = 1$ → γ-ray attenuation by annihilation and pair producing on the EBL

inferred spectral index Γ_F for the spectra in the top panel; overlay of *Fermi* data on BL Lacs and non-BL Lacs (mostly FSRQs)

Broderick, C.P.+ (2013)
Extragalactic gamma-ray background

- intrinsic spectrum for a TeV blazar:

\[
\frac{dN}{dE} = f \hat{F}_E = f \left[\left(\frac{E}{E_b} \right)^{\Gamma_i} + \left(\frac{E}{E_b} \right)^{\Gamma_h} \right]^{-1},
\]

- extragalactic gamma-ray background (EGRB):

\[
E^2 \frac{dN}{dE}(E, z) = \frac{1}{4\pi} \int_0^2 d\Gamma_i \int_{z'}^\infty dV(z') \frac{\eta_B \tilde{\Lambda}_Q(z') \hat{F}_{E'}}{4\pi D_L^2} e^{-\tau_E(E', z')},
\]

- $E_b = 1$ TeV is break energy, $\Gamma_h = 3$ is high-energy spectral index,
- Γ_i related to Γ_F, which is drawn from observed distribution
- $\eta_B \sim 0.2\%$ is blazar fraction, τ is optical depth
Extragalactic gamma-ray background

Dominated by soft sources

\[E^2 \frac{dN}{dE} \text{ (MeV s}^{-1} \text{ cm}^{-2} \text{ sr}^{-1}) \]

\[10^{-3} \]

\[10^{-4} \]

\[10^{-5} \]

\[10^{-2} \]

\[10^{-1} \]

\[1 \]

\[10 \]

\[10^2 \]

\[10^3 \]

\[10^4 \]

\[E (\text{GeV}) \]

Absorbed, after subtracting the resolved hard blazars, \(z < 0.3 \)

Absorbed by pair production

Unabsorbed

Abdo et al. (2010)

Ackermann et al. (in prep.)

Broderick, C.P. (2013)
Extragalactic gamma-ray background

→ evolving population of hard blazars provides excellent match to latest EGRB by Fermi for $E \gtrsim 3$ GeV

Christoph Pfrommer
The Physics and Cosmology of TeV Blazars
Extragalactic gamma-ray background

→ the signal at 10 (100) GeV is dominated by redshifts $z \sim 1.2$ ($z \sim 0.6$)

Broderick, C.P.+ (2013)
TeV emission from blazars – a new paradigm

\[\gamma_{\text{TeV}} + \gamma_{\text{eV}} \rightarrow e^+ + e^- \rightarrow \left\{ \begin{array}{l} \text{inv. Compton cascades} \rightarrow \gamma_{\text{GeV}} \\ \text{plasma instabilities} \end{array} \right. \]

Absence of \(\gamma_{\text{GeV}} \)'s has significant implications for . . .

- Intergalactic magnetic field estimates
- Unified picture of TeV blazars and quasars: explains Fermi's \(\gamma \)-ray background and blazar number counts
TeV emission from blazars – a new paradigm

\[\gamma_{\text{TeV}} + \gamma_{\text{eV}} \rightarrow e^+ + e^- \rightarrow \begin{cases} \text{inv. Compton cascades} & \rightarrow \gamma_{\text{GeV}} \\ \text{plasma instabilities} & \rightarrow \text{IGM heating} \end{cases} \]

absence of \(\gamma_{\text{GeV}} \)'s has significant implications for . . .

- intergalactic magnetic field estimates
- unified picture of TeV blazars and quasars: explains *Fermi*'s \(\gamma \)-ray background and blazar number counts

additional IGM heating has significant implications for . . .

- thermal history of the IGM: Lyman-\(\alpha \) forest
- late-time formation of dwarf galaxies
total power from AGN/stars vastly exceeds the TeV power of blazars
Blazar heating vs. photoheating

- total power from AGN/stars vastly exceeds the TeV power of blazars
- $T_{\text{IGM}} \sim 10^4 \text{ K (1 eV)}$ at mean density ($z \sim 2$)

\[
\varepsilon_{\text{th}} = \frac{kT}{m_p c^2} \sim 10^{-9}
\]
Blazar heating vs. photoheating

- total power from AGN/stars vastly exceeds the TeV power of blazars
- $T_{\text{IGM}} \sim 10^4$ K (1 eV) at mean density ($z \sim 2$)
 \[\varepsilon_{\text{th}} = \frac{kT}{m_p c^2} \sim 10^{-9} \]
- radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)
 \[\varepsilon_{\text{rad}} = \eta \Omega_{\text{bh}} \sim 0.1 \times 10^{-4} \sim 10^{-5} \]
Blazar heating vs. photoheating

- total power from AGN/stars vastly exceeds the TeV power of blazars
- $T_{\text{IGM}} \sim 10^4 \, \text{K} \, (1 \, \text{eV})$ at mean density ($z \sim 2$)

$$\epsilon_{\text{th}} = \frac{kT}{m_p c^2} \sim 10^{-9}$$

- radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)

$$\epsilon_{\text{rad}} = \eta \Omega_{\text{bh}} \sim 0.1 \times 10^{-4} \sim 10^{-5}$$

- fraction of the energy energetic enough to ionize H I is ~ 0.1:

$$\epsilon_{\text{UV}} \sim 0.1 \epsilon_{\text{rad}} \sim 10^{-6} \rightarrow kT \sim \text{keV}$$
Blazar heating vs. photoheating

- total power from AGN/stars vastly exceeds the TeV power of blazars
- $T_{\text{IGM}} \sim 10^4$ K (1 eV) at mean density ($z \sim 2$)
 \[\varepsilon_{\text{th}} = \frac{kT}{m_p c^2} \sim 10^{-9} \]

- radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)
 \[\varepsilon_{\text{rad}} = \eta \Omega_{\text{bh}} \sim 0.1 \times 10^{-4} \sim 10^{-5} \]

- fraction of the energy energetic enough to ionize H I is ~ 0.1:
 \[\varepsilon_{\text{UV}} \sim 0.1 \varepsilon_{\text{rad}} \sim 10^{-6} \rightarrow kT \sim \text{keV} \]

- photoheating efficiency $\eta_{\text{ph}} \sim 10^{-3}$
 \[kT \sim \eta_{\text{ph}} \varepsilon_{\text{UV}} m_p c^2 \sim \text{eV} \]
 (limited by the abundance of H I/He II due to the small recombination rate)
Blazar heating vs. photoheating

- Total power from AGN/stars vastly exceeds the TeV power of blazars
- \(T_{IGM} \sim 10^4 \, \text{K} \) (1 eV) at mean density \((z \sim 2)\)

\[
\varepsilon_{th} = \frac{kT}{m_p c^2} \sim 10^{-9}
\]

- Radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)

\[
\varepsilon_{rad} = \eta \Omega_{bh} \sim 0.1 \times 10^{-4} \sim 10^{-5}
\]

- Fraction of the energy energetic enough to ionize H I is \(\sim 0.1 \):

\[
\varepsilon_{UV} \sim 0.1 \varepsilon_{rad} \sim 10^{-6} \rightarrow kT \sim \text{keV}
\]

- Photoheating efficiency \(\eta_{ph} \sim 10^{-3} \) \(\rightarrow \) \(kT \sim \eta_{ph} \varepsilon_{UV} m_p c^2 \sim \text{eV} \)
 (limited by the abundance of H I/He II due to the small recombination rate)

- Blazar heating efficiency \(\eta_{bh} \sim 10^{-3} \) \(\rightarrow \) \(kT \sim \eta_{bh} \varepsilon_{rad} m_p c^2 \sim 10 \, \text{eV} \)
 (limited by the total power of TeV sources)
Thermal history of the IGM

\[T \text{ [K]} \]

- HI, HeI−/HeII− reionization
- Photoheating
- Blazar heating

\[10^3, 10^4, 10^5 \]

\[1 + z = 10, 20 \]

\[\text{temperature } 10 \times \text{ higher} \]

\[\text{increased temperature at mean density!} \]

C.P., Chang, Broderick (2012)
Evolution of the temperature-density relation

no blazar heating

\[T \propto \frac{1}{\delta} \]
no blazar heating

\begin{itemize}
 \item blazars and extragalactic background light are uniform:
 \item blazar heating rate independent of density
\end{itemize}
Evolution of the temperature-density relation

- blazars and extragalactic background light are uniform:
 \(\rightarrow \) blazar heating rate independent of density
 \(\rightarrow \) makes low density regions \textit{hot}
 \(\rightarrow \) causes inverted temperature-density relation, \(T \propto 1/\delta \)
Evolution of the temperature-density relation

- Blazars and extragalactic background light are uniform:
 - Blazar heating rate independent of density
 - Makes low density regions hot
 - Causes inverted temperature-density relation, $T \propto 1/\delta$

Chang, Broderick, C.P. (2012)
Blazars cause hot voids

no blazar heating

with blazar heating

Chang, Broderick, C.P. (2012)

Christoph Pfrommer

The Physics and Cosmology of TeV Blazars
Blazars cause hot voids

- blazars completely change the thermal history of the diffuse IGM and late-time structure formation

Chang, Broderick, C.P. (2012)
Cosmological hydrodynamical simulations

- include predicted volumetric heating rate in cosmological hydrodynamical simulations

- study:
 - thermal properties of intergalactic medium
 - Lyman-α forest
Temperature-density relation

\[
\log_{10}\left(\frac{\rho}{\langle\rho\rangle}\right) = -2 -1 0 1 2 3 \\
\log_{10}(T/K) = -8 -7 -6 -5 -4 -3 -2 5 6 7 8 9 10
\]

no blazar heating

intermediate blazar heating

Viel et al. 2009, F=0.1-0.8
Viel et al. 2009, F=0-0.9

Puchwein, C.P., Springel, Broderick, Chang (2012)
The Lyman-\(\alpha\) forest
The observed Lyman-\(\alpha\) forest
Optical depths and temperatures

- Effective optical depth τ_{eff} vs. redshift z
- Lines represent different levels of blazar heating:
 - No blazar heating
 - Weak blazar heating
 - Intermediate blazar heating
 - Strong blazar heating
- Data points from:
 - Viel et al. 2004
 - Tytler et al. 2004
 - FG '08

Redshift evolutions of effective optical depth and IGM temperature match data only with additional heating, e.g., provided by blazars!
Redshift evolutions of effective optical depth and IGM temperature match data only with additional heating, e.g., provided by blazars!
Ly-α flux PDFs and power spectra

- Tuned UV background

- z = 2.52

- z = 2.94

PDF of transmitted flux fraction

- no blazar heating
- weak blazar heating
- intermediate blazar heating
- strong blazar heating

Kim et al. 2007

- Transmitted flux fraction

- 10^(-1) to 10^1

Christoph Pfrommer

The Physics and Cosmology of TeV Blazars
Ly-α flux PDFs and power spectra

Puchwein, C.P+ (2012)
Voigt profile decomposition

- decomposing Lyman-\(\alpha\) forest into individual Voigt profiles
- allows studying the thermal broadening of absorption lines
Voigt profile decomposition – line width distribution

PDF of b [skm$^{-1}$] for $N_{HI} > 10^{13}$ cm$^{-2}$

- $2.75 < z < 3.05$
- no blazar heating
- weak blazar heating
- intermediate blazar heating
- strong blazar heating

Kirkman & Tytler ‘97

Puchwein, C.P.+ (2012)
improvement in modelling the Lyman-α forest is a direct consequence of the peculiar properties of blazar heating:

- **heating rate independent of IGM density** → naturally produces the inverted \(T - \rho \) relation that Lyman-α forest data demand

- **recent and continuous nature of the heating** is needed to match the redshift evolutions of all Lyman-α forest statistics

- **magnitude of the heating rate required by Lyman-α forest data** \(\sim \) the total energy output of TeV blazars (or equivalently \(\sim 0.2\% \) of that of quasars)
"Missing satellite" problem in the Milky Way

Substructures in cold DM simulations much more numerous than observed number of Milky Way satellites!

Christoph Pfrommer
The Physics and Cosmology of TeV Blazars
Dwarf galaxy formation

- thermal pressure opposes gravitational collapse on small scales
- characteristic length/mass scale below which objects do not form
Dwarf galaxy formation

- thermal pressure opposes gravitational collapse on small scales
- characteristic length/mass scale below which objects do not form
- hotter intergalactic medium → higher thermal pressure → higher Jeans mass:

\[M_J \propto \frac{c_s^3}{\rho^{1/2}} \propto \left(\frac{T_{\text{IGM}}^3}{\rho} \right)^{1/2} \rightarrow \frac{M_{J,\text{blazar}}}{M_{J,\text{photo}}} \approx \left(\frac{T_{\text{blazar}}}{T_{\text{photo}}} \right)^{3/2} \gtrsim 30 \]

→ blazar heating increases \(M_J \) by 30 over pure photoheating!
Dwarf galaxy formation

- thermal pressure opposes gravitational collapse on small scales
- characteristic length/mass scale below which objects do not form
- hotter intergalactic medium → higher thermal pressure → higher Jeans mass:

\[M_J \propto \frac{c_s^3}{\rho^{1/2}} \propto \left(\frac{T_{IGM}^3}{\rho} \right)^{1/2} \]

\[\frac{M_{J,blazar}}{M_{J,photo}} \approx \left(\frac{T_{blazar}}{T_{photo}} \right)^{3/2} \gtrsim 30 \]

→ blazar heating increases \(M_J \) by 30 over pure photoheating!

- complications:
 - non-linear collapse,
 - delayed pressure response in expanding universe → concept of “filtering mass”

C.P., Chang, Broderick (2012)
Dwarf galaxy formation suppressed

- blazar heating suppresses the formation of late-forming dwarfs within existing dark matter halos of masses $< 10^{11} M_\odot$
 → introduces new time and mass scale to galaxy formation!

C.P., Chang, Broderick (2012)
Conclusions on blazar heating

Blazar heating: TeV photons are attenuated by EBL; their kinetic energy → heating of the IGM; it is *not* cascaded to GeV energies
Conclusions on blazar heating

Blazar heating: TeV photons are attenuated by EBL; their kinetic energy → heating of the IGM; it is *not* cascaded to GeV energies

- explains puzzles in gamma-ray astrophysics:
 - lack of GeV bumps in blazar spectra without IGM B-fields
 - *unified TeV blazar-quasar model* explains Fermi source counts and extragalactic gamma-ray background
Conclusions on blazar heating

Blazar heating: TeV photons are attenuated by EBL; their kinetic energy → heating of the IGM; it is *not* cascaded to GeV energies

- explains puzzles in gamma-ray astrophysics:
 - lack of GeV bumps in blazar spectra without IGM B-fields
 - *unified TeV blazar-quasar model* explains Fermi source counts and extragalactic gamma-ray background

- novel mechanism; dramatically alters thermal history of the IGM:
 - uniform and z-dependent preheating
 - quantitative self-consistent picture of high-z Lyman-α forest
Conclusions on blazar heating

Blazar heating: TeV photons are attenuated by EBL; their kinetic energy → heating of the IGM; it is *not* cascaded to GeV energies

- explains puzzles in gamma-ray astrophysics:
 - lack of GeV bumps in blazar spectra without IGM B-fields
 - *unified TeV blazar-quasar model* explains Fermi source counts and extragalactic gamma-ray background

- novel mechanism; dramatically alters thermal history of the IGM:
 - uniform and z-dependent preheating
 - quantitative self-consistent picture of high-z Lyman-α forest

- significantly modifies late-time structure formation:
 - suppresses late dwarf formation
 - void phenomenon, “missing satellites” (?)

Challenges to the Challenge

Challenge #1 (known unknowns): **non-linear saturation**

- we assume that the non-linear damping rate = linear growth rate
- effect of wave-particle and wave-wave interactions need to be resolved
- using slow *collisional scattering* (reactive regime), Miniati & Elyiv (2012) claim that the nonlinear Landau damping rate is \(\ll \) linear growth rate
- also accounting for much faster *collisionless scattering* (kinetic regime) \(\rightarrow \) powerful instability, faster than IC cooling (Schlickeiser+ 2013, Chang+ in prep.)
Challenges to the Challenge

Challenge #1 (known unknowns): non-linear saturation

- we assume that the non-linear damping rate = linear growth rate
- effect of wave-particle and wave-wave interactions need to be resolved
- using slow collisional scattering (reactive regime), Miniati & Elyiv (2012) claim that the nonlinear Landau damping rate is \ll linear growth rate
- also accounting for much faster collisionless scattering (kinetic regime) → powerful instability, faster than IC cooling (Schlickeiser+ 2013, Chang+ in prep.)

Challenge #2 (unknown unknowns): inhomogeneous universe

- universe is inhomogeneous and hence density of electrons change as function of position
- could lead to loss of resonance over length scale \ll spatial growth length scale (Miniati & Elyiv 2012)
- growth length in oblique kinetic regime appears to be shorter than gradient \rightarrow no instability quenching! (Chang+ in prep.)
Simulations of the beam-plasma instability

- $\alpha \gamma = 3$ in simulation: beam energy density dominates rest frame energy density of background plasma
- $\alpha \gamma \sim 10^{-12}$ in reality: background dominates by far

$\alpha = \frac{n_{\text{beam}}}{n_{\text{IGM}}}$, Sironi & Giannios (2013)
Simulations of the beam-plasma instability

- $\alpha \gamma = 3$ in simulation: beam energy density dominates rest frame energy density of background plasma
- $\alpha \gamma \sim 10^{-12}$ in reality: background dominates by far
- Extrapolation with Lorentz force argument:
 $$\frac{\Delta p_{\text{beam}, \perp}}{\Delta t} \sim eE_{\perp}$$
- However: coherent field E_{\perp} causes beam deflection, not broadening of momentum distribution

$\alpha = \frac{n_{\text{beam}}}{n_{\text{IGM}}}$, Sironi & Giannios (2013)
Lu, Mo, Lu, Katz, et al. (2013): constructing merger tree-based model of galaxy formation that matches

- observed stellar mass function (different z)
- luminosity function of local cluster galaxies

→ star formation histories of dark matter halos (different z)
Empirical model for star formation histories (2)

→ strong quenching of star formation efficiency for $z \lesssim 2$ in low-mass halos ($M < 10^{11} h^{-1} M_\odot$) → blazar heating?
When do dwarfs form?

Dolphin+ (2005)

Isochrone fitting for different metallicities \rightarrow star formation histories
When do dwarfs form?

\[\tau_{\text{form}} > 10 \, \text{Gyr}, \, z > 2 \]

Dolphin+ (2005)
Milky Way satellites: formation history and abundance

Late forming satellites (< 10 Gyr) not observed!

Maccio & Fontanot (2010)

Blazars
Gamma-ray sky
Structure formation

Properties of blazar heating
The Lyman-α forest
Dwarf galaxies

The Physics and Cosmology of TeV Blazars

Christoph Pfrommer

HITS
Milky Way satellites: formation history and abundance

Blazars
Gamma-ray sky
Structure formation
The Lyman-\(\alpha\) forest
Dwarf galaxies

Blazars
Gamma-ray sky
Structure formation
The Lyman-\(\alpha\) forest
Dwarf galaxies

satellite formation time

Maccio & Fontanot (2010)

late forming satellites (< 10 Gyr)
not observed!

satellite luminosity function

Maccio+ (2010)

- blazar heating suppresses late satellite formation, may reconcile low observed dwarf abundances with CDM simulations
Galactic H I-mass function

- H I-mass function is too flat (i.e., gas version of missing dwarf problem!)
- photoheating and SN feedback too inefficient
- IGM entropy floor of $K \sim 15 \text{ keV cm}^2$ at $z \sim 2 - 3$ successful!