## The Physics and Cosmology of TeV Blazars

#### Christoph Pfrommer<sup>1</sup>

in collaboration with

Avery E. Broderick, Phil Chang, Ewald Puchwein, Volker Springel

<sup>1</sup> Heidelberg Institute for Theoretical Studies, Germany

Jul 10, 2014 / Astrophysics Seminar Würzburg



#### Motivation

A new link between high-energy astrophysics and cosmological structure formation



#### Introduction to Blazars

- active galactic nuclei (AGN)
- propagating gamma rays
- plasma physics



#### Motivation

A new link between high-energy astrophysics and cosmological structure formation



#### Introduction to Blazars

- active galactic nuclei (AGN)
- propagating gamma rays
- plasma physics

#### Cosmological Consequences

- unifying blazars with AGN
- gamma-ray background



#### Motivation

A new link between high-energy astrophysics and cosmological structure formation



#### Introduction to Blazars

- active galactic nuclei (AGN)
- propagating gamma rays
- plasma physics

#### Cosmological Consequences

- unifying blazars with AGN
- gamma-ray background
- thermal history of the Universe
- Lyman- $\alpha$  forest
- formation of dwarf galaxies



## Active galactic nucleus (AGN)



- AGN: compact region at the center of a galaxy, which dominates the luminosity of its electromagnetic spectrum
- AGN emission is most likely caused by mass accretion onto a supermassive black hole and can also launch relativistic jets
- AGNs are the most luminous sources in the universe
  - → discovery of distant objects



### Active galactic nucleus at a cosmological distance



Quasar 3C175 at  $z \simeq 0.8$ : jet extends  $10^6$  light years across

- AGN: compact region at the center of a galaxy, which dominates the luminosity of its electromagnetic spectrum
- AGN emission is most likely caused by mass accretion onto a supermassive black hole and can also launch relativistic jets
- AGNs are the most luminous sources in the universe
  - → discovery of distant objects





## Unified model of active galactic nuclei





## Unified model of active galactic nuclei





### TeV gamma-ray observations





## The TeV gamma-ray sky

There are several classes of TeV sources:

- Galactic pulsars, BH binaries, supernova remnants
- Extragalactic mostly blazars, two starburst galaxies



## Annihilation and pair production







## Annihilation and pair production





## **Inverse Compton cascades**





### **Inverse Compton cascades**



→ each TeV point source should also be a GeV point source!



### What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray halo



### What about the cascade emission?

Every TeV source should be associated with a 1-100 GeV gamma-ray halo – **not seen!** 



## **Inverse Compton cascades**





# Extragalactic magnetic fields?





## Extragalactic magnetic fields?



- GeV point source diluted → weak "pair halo"
- stronger B–field implies more deflection and dilution, gamma–ray non–detection  $\longrightarrow$   $B\gtrsim 10^{-16}\,\mathrm{G}$  primordial fields?



# Extragalactic magnetic fields?



 problem for unified AGN model: no increase in comoving blazar density with redshift allowed (as seen in other AGNs) since other wise, extragalactic GeV background would be overproduced!



# What else could happen?







### Plasma instabilities



pair plasma beam propagating through the intergalactic medium



### Plasma instabilities

pair beam

#### intergalactic medium (IGM)



- this configuration is unstable to plasma instabilities
- characteristic frequency and length scale of the problem:

$$\omega_p = \sqrt{rac{4\pi e^2 n_e}{m_e}}, \qquad \lambda_p = \left. rac{c}{\omega_p} 
ight|_{ar{
ho}(z=0)} \sim 10^8 \, \mathrm{cm}$$





## Two-stream instability

consider wave-like perturbation in background plasma along the beam direction (Langmuir wave):

- initially homogeneous beam-e<sup>-</sup>: attractive (repulsive) force by potential maxima (minima)
- ullet  $e^-$  attain lowest velocity in potential minima o bunching up
- ullet  $e^+$  attain lowest velocity in potential maxima o bunching up



## Two-stream instability

consider wave-like perturbation in background plasma along the beam direction (Langmuir wave):

- beam- $e^+/e^-$  couple in phase with the background perturbation: enhances background potential
- stronger forces on beam- $e^+/e^- \rightarrow$  positive feedback
- exponential wave-growth → instability



### Two-stream instability: momentum transfer



- particles with  $v \gtrsim v_{\text{phase}}$ : pair momentum  $\rightarrow$  plasma waves  $\rightarrow$  growing modes: instability
- particles with  $v \lesssim v_{\text{phase}}$ : plasma wave momentum  $\rightarrow$  pairs  $\rightarrow$  Landau damping



## Oblique instability

- k oblique to  $v_{\text{beam}}$ : real word perturbations don't choose "easy" alignment =  $\sum$  all orientations
- oblique grows faster than two-stream: E-fields can easier deflect ultra-relativistic particles than change their parallel velocities (Nakar, Bret & Milosavljevic 2011)



## Oblique instability

- k oblique to  $v_{\text{beam}}$ : real word perturbations don't choose "easy" alignment =  $\sum$  all orientations
- oblique grows faster than two-stream: E-fields can easier deflect ultra-relativistic particles than change their parallel velocities





### Beam physics – growth rates



- consider a light beam penetrating into relatively dense plasma
- maximum growth rate

$$\Gamma \simeq 0.4 \, \gamma \, \frac{n_{
m beam}}{n_{
m IGM}} \, \omega_p$$

Broderick, Chang, C.P. (2012), also Schlickeiser+ (2012)



## Beam physics – growth rates



Broderick, Chang, C.P. (2012), also Schlickeiser+ (2012)

- consider a light beam penetrating into relatively dense plasma
- maximum growth rate

$$\Gamma \simeq 0.4 \, \gamma \, rac{n_{
m leam}}{n_{
m lGM}} \, \omega_{
m p}$$

- oblique instability beats inverse Compton cooling by factor 10-100
- assume that instability grows at linear rate up to saturation



## TeV emission from blazars – a new paradigm

$$\gamma_{\mathsf{TeV}} + \gamma_{\mathsf{eV}} \ o \ e^+ + e^- \ o \ \left\{ egin{array}{ll} \mathsf{inv.} \ \mathsf{Compton} \ \mathsf{cascades} & o & \gamma_{\mathsf{GeV}} \\ \mathsf{plasma} \ \mathsf{instabilities} \end{array} 
ight.$$



## TeV emission from blazars – a new paradigm

$$\gamma_{\mathsf{TeV}} + \gamma_{\mathsf{eV}} \ o \ \pmb{e}^+ + \pmb{e}^- \ o \ \left\{ egin{array}{ll} \mathsf{inv.} \ \mathsf{Compton} \ \mathsf{cascades} & o & \gamma_{\mathsf{GeV}} \\ \mathsf{plasma} \ \mathsf{instabilities} \end{array} 
ight.$$

absence of  $\gamma_{\rm GeV}$ 's has significant implications for . . .

- intergalactic magnetic field estimates
- unified picture of TeV blazars and quasars



## Implications for intergalactic magnetic fields

$$\gamma_{\mathsf{TeV}} + \gamma_{\mathsf{eV}} \ o \ \mathbf{e}^+ + \mathbf{e}^- \ o \ \left. \left. \right. \right. \right.$$

inv. Compton cascades  $\rightarrow \gamma_{\rm GeV}$  plasma instabilities

- competition of rates:
   Γ<sub>IC</sub> vs. Γ<sub>oblique</sub>
- fraction of the pair energy lost to inverse-Compton on the CMB:
   f<sub>IC</sub> = Γ<sub>IC</sub>/(Γ<sub>IC</sub> + Γ<sub>oblique</sub>)
- plasma instability dominates for more luminous blazars



## Conclusions on B-field constraints from blazar spectra

- it is thought that TeV blazar spectra might constrain IGM B-fields
- this assumes that cooling mechanism is IC off the CMB + deflection from magnetic fields
- ullet beam instabilities allow high-energy  $e^+/e^-$  pairs to self scatter and/or lose energy
- isotropizes the beam no need for B-field
- ullet  $\lesssim$  1–10% of beam energy to IC CMB photons



## Conclusions on B-field constraints from blazar spectra

- it is thought that TeV blazar spectra might constrain IGM B-fields
- this assumes that cooling mechanism is IC off the CMB + deflection from magnetic fields
- beam instabilities allow high-energy  $e^+/e^-$  pairs to self scatter and/or lose energy
- isotropizes the beam no need for B-field
- $\bullet \lesssim 1-10\%$  of beam energy to IC CMB photons
- → TeV blazar spectra are not suitable to measure IGM B-fields (if plasma instabilities saturate close to linear rate)!

Broderick, Chang, C.P. (2012), Schlickeiser, Krakau, Supsar (2013), Chang+ (in prep.)



→ 3 → 4 3 →

## TeV blazar luminosity density: today



- collect luminosity of all 23 TeV blazars with good spectral measurements
- account for the selection effects (sky coverage, duty cycle, galactic occultation, TeV flux limit)
- TeV blazar luminosity density is a scaled version ( $\eta_B \sim 0.2\%$ ) of that of quasars!

Broderick, Chang, C.P. (2012)



### Unified TeV blazar-quasar model



#### Quasars and TeV blazars are:

- regulated by the same mechanism
- contemporaneous elements of a single AGN population: TeV-blazar activity does not lag quasar activity

Broderick, Chang, C.P. (2012)



### Unified TeV blazar-quasar model



Quasars and TeV blazars are:

- regulated by the same mechanism
- contemporaneous elements of a single AGN population: TeV-blazar activity does not lag quasar activity
- $\rightarrow$  assume that they trace each other for all redshifts!

Broderick, Chang, C.P. (2012)





→ use all-sky survey of the GeV gamma-ray sky: *Fermi* gamma-ray space telescope





Hopkins+ (2007)





Hopkins+ (2007)









## Redshift distribution of *Fermi* hard $\gamma$ -ray blazars





## Redshift distribution of *Fermi* hard $\gamma$ -ray blazars



→ evolving (increasing) blazar population consistent with observed declining evolution (*Fermi* flux limit)!



# $\log N - \log S$ distribution of *Fermi* hard $\gamma$ -ray blazars





# $\log \mathcal{N} - \log \mathcal{S}$ distribution of *Fermi* hard $\gamma$ -ray blazars



 $\rightarrow$  predicted and observed flux distributions of hard Fermi blazars between 10 GeV and 500 GeV are indistinguishable!









#### TeV photon absorption by pair production



intrinsic and observed SEDs of blazars at z = 1

 $\rightarrow \gamma$ -ray attenuation by annihilation and pair producing on the EBL

inferred spectral index  $\Gamma_F$  for the spectra in the top panel; overlay of *Fermi* data on BL Lacs and non-BL Lacs (mostly FSRQs)



intrinsic spectrum for a TeV blazar:

$$\frac{dN}{dE} = f\hat{F}_E = f\left[\left(\frac{E}{E_b}\right)^{\Gamma_I} + \left(\frac{E}{E_b}\right)^{\Gamma_b}\right]^{-1},$$

 $E_b=1$  TeV is break energy,  $\Gamma_h=3$  is high-energy spectral index,  $\Gamma_I$  related to  $\Gamma_F$ , which is drawn from observed distribution

extragalactic gamma-ray background (EGRB):

$$E^2 \frac{dN}{dE}(E,z) = \frac{1}{4\pi} \int_0^2 d\Gamma_I \int_z^\infty dV(z') \frac{\eta_B \, \tilde{\Lambda}_Q(z') \hat{F}_{E'}}{4\pi D_L^2} e^{-\tau_E(E',z')},$$

E' = E(1 + z') is gamma-ray energy at *emission*,  $\tilde{\Lambda}_O$  is physical quasar luminosity density,

 $\eta_{B}\sim$  0.2% is blazar fraction, au is optical depth









 $\rightarrow$  evolving population of hard blazars provides excellent match to latest EGRB by *Fermi* for  $E \ge 3$  GeV





 $\rightarrow$  the signal at 10 (100) GeV is dominated by redshifts  $z\sim$  1.2 ( $z\sim$  0.6)



## TeV emission from blazars – a new paradigm

$$\gamma_{\mathsf{TeV}} + \gamma_{\mathsf{eV}} \ o \ \pmb{e}^+ + \pmb{e}^- \ o \ \left\{ egin{array}{ll} \mathsf{inv.} \ \mathsf{Compton} \ \mathsf{cascades} & o & \gamma_{\mathsf{GeV}} \\ \mathsf{plasma} \ \mathsf{instabilities} \end{array} 
ight.$$

absence of  $\gamma_{\rm GeV}$ 's has significant implications for . . .

- intergalactic magnetic field estimates
- unified picture of TeV blazars and quasars: explains  $Fermi's \gamma$ -ray background and blazar number counts



## TeV emission from blazars – a new paradigm

$$\gamma_{\mathsf{TeV}} + \gamma_{\mathsf{eV}} \ o \ e^+ + e^- \ o \ \left\{ egin{array}{ll} \mathsf{inv.} \ \mathsf{Compton} \ \mathsf{cascades} & o & \gamma_{\mathsf{GeV}} \\ \mathsf{plasma} \ \mathsf{instabilities} & o & \mathsf{IGM} \ \mathsf{heating} \end{array} 
ight.$$

#### absence of $\gamma_{\text{GeV}}$ 's has significant implications for . . .

- intergalactic magnetic field estimates
- unified picture of TeV blazars and quasars: explains Fermi's γ-ray background and blazar number counts

#### additional IGM heating has significant implications for ...

- thermal history of the IGM: Lyman- $\alpha$  forest
- late-time formation of dwarf galaxies



total power from AGN/stars vastly exceeds the TeV power of blazars



- total power from AGN/stars vastly exceeds the TeV power of blazars
- $T_{\rm IGM} \sim 10^4$  K (1 eV) at mean density ( $z \sim 2$ )

$$arepsilon_{
m th} = rac{kT}{m_{
m p}c^2} \sim 10^{-9}$$



- total power from AGN/stars vastly exceeds the TeV power of blazars
- $T_{\rm IGM} \sim 10^4$  K (1 eV) at mean density ( $z \sim 2$ )

$$arepsilon_{
m th} = rac{kT}{m_{
m p}c^2} \sim 10^{-9}$$

radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)

$$arepsilon_{
m rad} = \eta \, \Omega_{
m bh} \sim 0.1 imes 10^{-4} \sim 10^{-5}$$

4 □ > 4 □ > 4 □ > 4 □ >

- total power from AGN/stars vastly exceeds the TeV power of blazars
- $T_{\rm IGM} \sim 10^4$  K (1 eV) at mean density ( $z \sim 2$ )

$$arepsilon_{
m th} = rac{kT}{m_{
m p}c^2} \sim 10^{-9}$$

radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)

$$\varepsilon_{\rm rad} = \eta \, \Omega_{\rm bh} \sim 0.1 \times 10^{-4} \sim 10^{-5}$$

• fraction of the energy energetic enough to ionize H  $\scriptstyle\rm I$  is  $\sim$  0.1:

$$\varepsilon_{\rm UV} \sim 0.1 \varepsilon_{\rm rad} \sim 10^{-6} \quad \rightarrow \quad kT \sim {\rm keV}$$



4 D > 4 D > 4 E > 4 E >

- total power from AGN/stars vastly exceeds the TeV power of blazars
- $T_{\rm IGM} \sim 10^4$  K (1 eV) at mean density ( $z \sim 2$ )

$$arepsilon_{
m th} = rac{kT}{m_{
m p}c^2} \sim 10^{-9}$$

radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)

$$\varepsilon_{\rm rad} = \eta \, \Omega_{\rm bh} \sim 0.1 \times 10^{-4} \sim 10^{-5}$$

• fraction of the energy energetic enough to ionize H  $\scriptstyle\rm I$  is  $\sim$  0.1:

$$\varepsilon_{\text{UV}} \sim 0.1 \varepsilon_{\text{rad}} \sim 10^{-6} \quad \rightarrow \quad kT \sim \text{keV}$$

• photoheating efficiency  $\eta_{\rm ph}\sim 10^{-3}$   $\rightarrow$   $kT\sim\eta_{\rm ph}\,\varepsilon_{\rm UV}\,m_{\rm p}c^2\sim {\rm eV}$  (limited by the abundance of H  $l/{\rm He}$  II due to the small recombination rate)



- total power from AGN/stars vastly exceeds the TeV power of blazars
- $T_{\rm IGM} \sim 10^4$  K (1 eV) at mean density ( $z \sim 2$ )

$$\varepsilon_{\rm th} = \frac{kT}{m_{\rm p}c^2} \sim 10^{-9}$$

radiative energy ratio emitted by BHs in the Universe (Fukugita & Peebles 2004)

$$arepsilon_{
m rad} = \eta \, \Omega_{
m bh} \sim 0.1 imes 10^{-4} \sim 10^{-5}$$

• fraction of the energy energetic enough to ionize H  $\scriptstyle\rm I$  is  $\sim$  0.1:

$$\varepsilon_{\rm UV} \sim 0.1 \varepsilon_{\rm rad} \sim 10^{-6} \quad \rightarrow \quad kT \sim {\rm keV}$$

- photoheating efficiency  $\eta_{\rm ph}\sim 10^{-3}$   $\rightarrow$   $kT\sim\eta_{\rm ph}\,\varepsilon_{\rm UV}\,m_{\rm p}c^2\sim {\rm eV}$  (limited by the abundance of H  $l/{\rm He}$  II due to the small recombination rate)
- blazar heating efficiency  $\eta_{\rm bh}\sim 10^{-3}$   $\to$   $kT\sim\eta_{\rm bh}\,\varepsilon_{\rm rad}\,m_{\rm p}c^2\sim 10\,{\rm eV}$  (limited by the total power of TeV sources)



### Thermal history of the IGM



 $\rightarrow$  increased temperature at **mean** density!



#### no blazar heating





#### no blazar heating



- blazars and extragalactic background light are uniform:
  - → blazar heating rate independent of density



#### no blazar heating



- blazars and extragalactic background light are uniform:
  - → blazar heating rate independent of density
  - → makes low density regions hot
  - ightarrow causes inverted temperature-density relation,  $T \propto 1/\delta$





#### no blazar heating



#### with blazar heating



- blazars and extragalactic background light are uniform:
  - → blazar heating rate independent of density
  - → makes low density regions hot
  - ightarrow causes inverted temperature-density relation,  $T \propto 1/\delta$





#### Blazars cause hot voids

#### no blazar heating



#### with blazar heating



Chang, Broderick, C.P. (2012)



#### Blazars cause hot voids

#### no blazar heating



#### with blazar heating



Chang, Broderick, C.P. (2012)

 blazars completely change the thermal history of the diffuse IGM and late-time structure formation



### Cosmological hydrodynamical simulations

- include predicted volumetric heating rate in cosmological hydrodynamical simulations
- study:
  - thermal properties of intergalactic medium
  - $\bullet$  Lyman- $\alpha$  forest





### Temperature-density relation



Puchwein, C.P., Springel, Broderick, Chang (2012)



#### The Lyman- $\alpha$ forest





#### The observed Lyman- $\alpha$ forest





#### The simulated Ly- $\alpha$ forest



## Optical depths and temperatures





#### Optical depths and temperatures



Redshift evolutions of effective optical depth and IGM temperature match data only with additional heating, e.g., provided by blazars!



# Ly- $\alpha$ flux PDFs and power spectra





# Ly- $\alpha$ flux PDFs and power spectra



Puchwein, C.P.+ (2012)





#### Voigt profile decomposition



- decomposing Lyman- $\alpha$  forest into individual Voigt profiles
- allows studying the thermal broadening of absorption lines



#### Voigt profile decomposition – line width distribution



#### Lyman- $\alpha$ forest in a blazar heated Universe

improvement in modelling the Lyman- $\alpha$  forest is a direct consequence of the peculiar properties of blazar heating:

- heating rate independent of IGM density  $\rightarrow$  naturally produces the inverted  $T-\rho$  relation that Lyman- $\alpha$  forest data demand
- recent and continuous nature of the heating is needed to match the redshift evolutions of all Lyman- $\alpha$  forest statistics
- magnitude of the heating rate required by Lyman- $\alpha$  forest data  $\sim$  the total energy output of TeV blazars (or equivalently  $\sim$  0.2% of that of quasars)



# "Missing satellite" problem in the Milky Way



Substructures in cold DM simulations much more numerous than observed number of Milky Way satellites!



## Dwarf galaxy formation

- thermal pressure opposes gravitational collapse on small scales
- characteristic length/mass scale below which objects do not form



# Dwarf galaxy formation

- thermal pressure opposes gravitational collapse on small scales
- characteristic length/mass scale below which objects do not form
- ullet hotter intergalactic medium o higher thermal pressure
  - → higher Jeans mass:

$$M_J \propto \frac{c_s^3}{
ho^{1/2}} \propto \left(\frac{T_{\text{IGM}}^3}{
ho}\right)^{1/2} \quad o \quad \frac{M_{J,\text{blazar}}}{M_{J,\text{photo}}} \approx \left(\frac{T_{\text{blazar}}}{T_{\text{photo}}}\right)^{3/2} \gtrsim 30$$

 $\rightarrow$  blazar heating increases  $M_J$  by 30 over pure photoheating!



# Dwarf galaxy formation

- thermal pressure opposes gravitational collapse on small scales
- characteristic length/mass scale below which objects do not form
- hotter intergalactic medium → higher thermal pressure
   → higher Jeans mass:

$$M_J \propto \frac{c_{\rm s}^3}{
ho^{1/2}} \propto \left(\frac{T_{\rm IGM}^3}{
ho}\right)^{1/2} \quad o \quad \frac{M_{J,{
m blazar}}}{M_{J,{
m photo}}} pprox \left(\frac{T_{
m blazar}}{T_{
m photo}}\right)^{3/2} \gtrsim 30$$

- $\rightarrow$  blazar heating increases  $M_J$  by 30 over pure photoheating!
- complications: non-linear collapse, delayed pressure response in expanding universe → concept of "filtering mass"



# Dwarf galaxy formation suppressed



- $\bullet$  blazar heating suppresses the formation of late-forming dwarfs within existing dark matter halos of masses  $<10^{11}\,M_\odot$ 
  - → introduces new time and mass scale to galaxy formation!





- explains puzzles in gamma-ray astrophysics:
  - lack of GeV bumps in blazar spectra without IGM B-fields
  - unified TeV blazar-quasar model explains Fermi source counts and extragalactic gamma-ray background



- explains puzzles in gamma-ray astrophysics:
  - lack of GeV bumps in blazar spectra without IGM B-fields
  - unified TeV blazar-quasar model explains Fermi source counts and extragalactic gamma-ray background
- novel mechanism; dramatically alters thermal history of the IGM:
  - uniform and z-dependent preheating
  - quantitative self-consistent picture of high-z Lyman- $\alpha$  forest





- explains puzzles in gamma-ray astrophysics:
  - lack of GeV bumps in blazar spectra without IGM B-fields
  - unified TeV blazar-quasar model explains Fermi source counts and extragalactic gamma-ray background
- novel mechanism; dramatically alters thermal history of the IGM:
  - uniform and z-dependent preheating
  - quantitative self-consistent picture of high-z Lyman- $\alpha$  forest
- significantly modifies late-time structure formation:
  - suppresses late dwarf formation
  - void phenomenon, "missing satellites" (?)





#### Literature for the talk

- Broderick, Chang, Pfrommer, The cosmological impact of luminous TeV blazars
   I: implications of plasma instabilities for the intergalactic magnetic field and
   extragalactic gamma-ray background, ApJ, 752, 22, 2012.
- Chang, Broderick, Pfrommer, The cosmological impact of luminous TeV blazars II: rewriting the thermal history of the intergalactic medium, ApJ, 752, 23, 2012.
- Pfrommer, Chang, Broderick, The cosmological impact of luminous TeV blazars III: implications for galaxy clusters and the formation of dwarf galaxies, ApJ, 752, 24, 2012.
- Puchwein, Pfrommer, Springel, Broderick, Chang, *The Lyman-* $\alpha$  *forest in a blazar-heated Universe*, MNRAS, 423, 149, 2012.
- Broderick, Pfrommer, Chang, Puchwein, Implications of plasma beam instabilities for the statistics of the Fermi hard gamma-ray blazars and the origin of the extragalactic gamma-ray background, ApJ, in print, 2014.
- Broderick, Pfrommer, Chang, Puchwein, Lower limits upon the anisotropy of the extragalactic gamma-ray background implied by the 2FGL and 1FHL catalogs, ApJ, subm., 2013.



#### Additional slides



## Challenges to the Challenge

#### Challenge #1 (known unknowns): non-linear saturation

- we assume that the non-linear damping rate = linear growth rate
- effect of wave-particle and wave-wave interactions need to be resolved
- using slow collisional scattering (reactive regime), Miniati & Elyiv (2012)
   claim that the nonlinear Landau damping rate is ≪ linear growth rate
- also accounting for much faster *collisionless scattering* (kinetic regime)
  - → powerful instability, faster than IC cooling (Schlickeiser+ 2013, Chang+ in prep.)



## Challenges to the Challenge

#### Challenge #1 (known unknowns): non-linear saturation

- we assume that the non-linear damping rate = linear growth rate
- effect of wave-particle and wave-wave interactions need to be resolved
- using slow collisional scattering (reactive regime), Miniati & Elyiv (2012) claim that the nonlinear Landau damping rate is ≪ linear growth rate
- also accounting for much faster collisionless scattering (kinetic regime)
   powerful instability, faster than IC cooling (Schlickeiser+ 2013, Chang+ in prep.)

#### Challenge #2 (unknown unknowns): inhomogeneous universe

- universe is inhomogeneous and hence density of electrons change as function of position
- could lead to loss of resonance over length scale 
   ≪ spatial growth length scale (Miniati & Elyiv 2012)
- growth length in oblique kinetic regime appears to be shorter than gradient → no instability quenching! (Chang+ in prep.)



## Simulations of the beam-plasma instability



 $\alpha = n_{\text{beam}}/n_{\text{IGM}}$ , Sironi & Giannios (2013)

- $\alpha \gamma =$  3 in simulation: beam energy density dominates rest frame energy density of background plasma
- $\alpha \gamma \sim$  10<sup>-12</sup> in reality: background dominates by far



## Simulations of the beam-plasma instability



 $\alpha = n_{\rm beam}/n_{\rm IGM}$ , Sironi & Giannios (2013)

- $\alpha\gamma =$  3 in simulation: beam energy density dominates rest frame energy density of background plasma
- $\alpha\gamma\sim$  10<sup>-12</sup> in reality: background dominates by far
- extrapolation with Lorentz force argument:

$$rac{\Delta 
ho_{\mathsf{beam},\perp}}{\Delta t} \sim e extsf{E}_{\perp}$$

however: coherent field E<sub>⊥</sub>
 causes beam deflection, not
 broadening of momentum
 distribution



## Empirical model for star formation histories (1)

Lu, Mo, Lu, Katz, et al. (2013): constructing merger tree-based model of galaxy formation that matches

- observed stellar mass function (different z)
- luminosity function of local cluster galaxies

 $\rightarrow$  star formation histories of dark matter halos (different z)



## Empirical model for star formation histories (2)



 $\rightarrow$  strong quenching of star formation efficiency for  $z \lesssim 2$  in low-mass-halos ( $M < 10^{11} \ h^{-1} \rm M_{\odot}$ )  $\rightarrow$  blazar heating?



#### When do dwarfs form?





isochrone fitting for different metallicities  $\rightarrow$  star formation histories



#### When do dwarfs form?



red:  $\tau_{form} > 10 \text{ Gyr}, z > 2$ 



# Milky Way satellites: formation history and abundance

#### satellite formation time





## Milky Way satellites: formation history and abundance



 blazar heating suppresses late satellite formation, may reconcile low observed dwarf abundances with CDM simulations



#### Galactic H I-mass function



- H I-mass function is too flat (i.e., gas version of missing dwarf problem!)
- photoheating and SN feedback too inefficient
- IGM entropy floor of  $K\sim 15\,\text{keV}$  cm<sup>2</sup> at  $z\sim 2-3$  successful!

