Cosmic-ray shock acceleration and transport of electron spectra

Christoph Pfrommer¹

in collaboration with

PhD students: Ehlert¹, Lemmerz¹, Thomas¹, Werhahn¹, Whittingham¹, Winner¹ Postdocs: Berlok¹, Buck¹, Shalaby¹, Girichidis², Sparre^{3,1}, Simpson⁴ Faculty: Puchwein¹, Pakmor⁵, Springel⁵

¹AIP Potsdam, ²U of Heidelberg, ³U of Potsdam, ⁴U of Chicago, ⁵MPA Garching Jet Composition and Radiative Processes, Würzburg, April 2022

Finding shocks in MHD simulations Cosmic-ray shock acceleration Sedov explosions

Outline

- Finding shocks in MHD simulations
- Cosmic-ray shock acceleration
- Sedov explosions

Supernova simulations

- Setup
- Protons and hadronic emission
- Electrons and leptonic emission

Finding shocks in MHD simulations Cosmic-ray shock acceleration Sedov explosions

Magneto-hydrodynamics (MHD) with cosmic rays

MHD - hyperbolic partial differential equations:

$$rac{\partial oldsymbol{U}}{\partial t} + oldsymbol{
abla} \cdot oldsymbol{\mathsf{F}} = oldsymbol{\mathcal{S}},$$

 $\boldsymbol{U} = \begin{pmatrix} \rho \\ \rho \boldsymbol{v} \\ \varepsilon \\ \varepsilon_{\text{cr}} \\ \boldsymbol{B} \end{pmatrix}, \quad \boldsymbol{F} = \begin{pmatrix} \rho \boldsymbol{v} \\ \rho \boldsymbol{v} \boldsymbol{v}^{\text{T}} + P \mathbf{1} - \boldsymbol{B} \boldsymbol{B}^{\text{T}} \\ (\varepsilon + P) \boldsymbol{v} - \boldsymbol{B} (\boldsymbol{v} \cdot \boldsymbol{B}) \\ \varepsilon_{\text{cr}} \boldsymbol{v} + (\varepsilon_{\text{cr}} + P_{\text{cr}}) \boldsymbol{v}_{\text{st}} - \kappa_{\varepsilon} \boldsymbol{b} (\boldsymbol{b} \cdot \boldsymbol{\nabla} \varepsilon_{\text{cr}}) \\ \boldsymbol{B} \boldsymbol{v}^{\text{T}} - \boldsymbol{v} \boldsymbol{B}^{\text{T}} \end{pmatrix},$ $\boldsymbol{S} = \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{0} \\ P_{cr} \, \boldsymbol{\nabla} \cdot \boldsymbol{v} - \boldsymbol{v}_{st} \cdot \boldsymbol{\nabla} P_{cr} + \Lambda_{th} + \Gamma_{th} \\ -P_{cr} \, \boldsymbol{\nabla} \cdot \boldsymbol{v} + \boldsymbol{v}_{st} \cdot \boldsymbol{\nabla} P_{cr} + \Lambda_{cr} + \Gamma_{cr} \\ \boldsymbol{0} \end{pmatrix},$ and $P = P_{\text{th}} + P_{\text{cr}} + \mathbf{B}^2/2$, $\varepsilon = \varepsilon_{\text{th}} + \rho \mathbf{v}^2/2 + \mathbf{B}^2/2$, $\mathbf{v}_{\text{st}} = -\mathbf{v}_{\text{A}} \operatorname{sgn}(\mathbf{B} \cdot \nabla P_{\text{cr}})$ AIP

Finding shocks in MHD simulations Cosmic-ray shock acceleration Sedov explosions

Cosmological moving-mesh code AREPO (Springel 2010)

Cosmic-ray shock acceleration

Supernova simulations

Finding shocks in MHD simulations Cosmic-ray shock acceleration Sedov explosions

Shock finder

ъ

Cosmic-ray shock acceleration

Supernova simulations

Finding shocks in MHD simulations Cosmic-ray shock acceleration Sedov explosions

Shock finder

Voronoi cells belong to shock zone if

- $\nabla \cdot \mathbf{v} < 0$ (converging flow)
- $\nabla T \cdot \nabla \rho > 0$ (filtering out tangential discontinuities)
- $\mathcal{M}_1 > \mathcal{M}_{min}$ (safeguard against numerical noise)

Cosmic-ray shock acceleration

Finding shocks in MHD simulations Cosmic-ray shock acceleration Sedov explosions

Shock finder and CR acceleration

CR acceleration:

• shock surface: cell with most converging flow

Finding shocks in MHD simulations Cosmic-ray shock acceleration Sedov explosions

Shock finder and CR acceleration

CR acceleration:

- shock surface: cell with most converging flow
- collect pre- and post-shock energy at shock surface $\Rightarrow E_{diss}$
- inject $\Delta E_{cr} = \zeta(\mathcal{M}_1, \theta) E_{diss}$ to shock and 1st post-shock cell

Finding shocks in MHD simulations Cosmic-ray shock acceleration Sedov explosions

Shock finder and CR acceleration

CR acceleration:

- shock surface: cell with most converging flow
- collect pre- and post-shock energy at shock surface $\Rightarrow E_{diss}$
- inject $\Delta E_{cr} = \zeta(\mathcal{M}_1, \theta) E_{diss}$ to shock and 1st post-shock cell

Finding shocks in MHD simulations Cosmic-ray shock acceleration Sedov explosions

Shock finder and CR acceleration

Comparing simulations to novel exact solutions that include CR acceleration

Finding shocks in MHD simulations Cosmic-ray shock acceleration Sedov explosions

Shock finder and CR acceleration

Comparing simulations to novel exact solutions that include CR acceleration

AIP

Finding shocks in MHD simulations Cosmic-ray shock acceleration Sedov explosions

Shock finder and CR acceleration

Comparing simulations to novel exact solutions that include CR acceleration

Christoph Pfrommer Cosmic-ray shock acceleration and transport

Finding shocks in MHD simulations Cosmic-ray shock acceleration Sedov explosions

Shock finder and CR acceleration

CP, Pakmor, Schaal, Simpson, Springel (2017)

Finding shocks in MHD simulations Cosmic-ray shock acceleration Sedov explosions

Shock finder and CR acceleration

CP, Pakmor, Schaal, Simpson, Springel (2017)

CR acceleration:

● shock surface: cell with most converging flow along ∇7

Finding shocks in MHD simulations Cosmic-ray shock acceleration Sedov explosions

Shock finder and CR acceleration

CP, Pakmor, Schaal, Simpson, Springel (2017)

CR acceleration:

- shock surface: cell with most converging flow along ∇7
- collect pre- and post-shock energy at shock surface
- inject CR energy to shock and post-shock cell

Finding shocks in MHD simulations Cosmic-ray shock acceleration Sedov explosions

Shock finder and CR acceleration

CP, Pakmor, Schaal, Simpson, Springel (2017)

CR acceleration:

- shock surface: cell with most converging flow along ∇7
- collect pre- and post-shock energy at shock surface
- inject CR energy to shock and post-shock cell

Finding shocks in MHD simulations Cosmic-ray shock acceleration Sedov explosions

Sedov explosion

density

specific thermal energy

Christoph Pfrommer Cosmic-ray shock acceleration and transport

Finding shocks in MHD simulations Cosmic-ray shock acceleration Sedov explosions

Sedov explosion with CR acceleration

density

specific cosmic ray energy

Finding shocks in MHD simulations Cosmic-ray shock acceleration Sedov explosions

Sedov explosion with CR acceleration

adiabatic index

shock evolution

Setup Protons and hadronic emission Electrons and leptonic emission

Outline

Cosmic-ray shock acceleration in MHD simulations

- Finding shocks in MHD simulations
- Cosmic-ray shock acceleration
- Sedov explosions

Supernova simulations

- Setup
- Protons and hadronic emission
- Electrons and leptonic emission

Setup

Protons and hadronic emission Electrons and leptonic emission

Global MHD simulations of SNRs with CR physics

 detect and characterize shocks and jump conditions on the fly

Mach number finder with CRs

CP+ (2017)

Setup

Protons and hadronic emission Electrons and leptonic emission

Global MHD simulations of SNRs with CR physics

detect and characterize shocks and jump conditions on the fly

• measure Mach number \mathcal{M} and magnetic obliquity θ_B

obliquity-dep. acceleration efficiency

Pais, CP+ (2018) based on hybrid PIC sim.'s by Caprioli & Spitkovsky (2015)

Setup

Protons and hadronic emission Electrons and leptonic emission

Global MHD simulations of SNRs with CR physics

simulated TeV gamma-ray map

Pais & CP (2020)

- detect and characterize shocks and jump conditions on the fly
- measure Mach number \mathcal{M} and magnetic obliquity θ_B
- inject and transport CR protons
 ⇒ dynamical back reaction on gas flow, hadronic emission

Setup

Protons and hadronic emission Electrons and leptonic emission

Global MHD simulations of SNRs with CR physics

simulated gamma-ray spectrum

Winner, CP+ (2019, 2020)

- detect and characterize shocks and jump conditions on the fly
- measure Mach number M and magnetic obliquity θ_B
- inject and transport CR protons
 ⇒ dynamical back reaction on gas flow, hadronic emission
- inject and transport CR electrons
- calculate non-thermal radio, X-ray, γ-ray emission

Setup Protons and hadronic emission Electrons and leptonic emission

Hadronic TeV γ rays: SN 1006

Christoph Pfrommer

Cosmic-ray shock acceleration and transport

AIP

Setup Protons and hadronic emission Electrons and leptonic emission

Hadronic TeV γ rays: SN 1006

Christoph Pfrommer

Cosmic-ray shock acceleration and transport

AIP

э

Setup Protons and hadronic emission Electrons and leptonic emission

Hadronic TeV γ rays: Vela Jr. and RXJ 1713

Christoph Pfrommer

Setup Protons and hadronic emission Electrons and leptonic emission

TeV γ rays from shell-type supernova remnants

Varying magnetic coherence scale in simulations of SN 1006 and Vela Junior

프 🖌 🛪 프 🕨

Setup Protons and hadronic emission Electrons and leptonic emission

TeV γ rays from shell-type supernova remnants

Varying magnetic coherence scale in simulations of SN 1006 and Vela Junior

 \Rightarrow Correlation structure of patchy TeV γ -rays constrains magnetic coherence scale in ISM:

SN 1006: $\lambda_B > 200^{+80}_{-10}$ pc

Setup Protons and hadronic emission Electrons and leptonic emission

CREST - Cosmic Ray Electron Spectra evolved in Time

CREST code (Winner, CP+ 2019)

- post-processing MHD simulations
- on Lagrangian particles
 - adiabatic processes
 - Coulomb and radiative losses
 - Fermi-I (re-)acceleration
 - Fermi-II reacceleration
 - secondary electrons

Link to observations

- radio synchrotron
- inverse Compton (IC) γ -ray

Setup Protons and hadronic emission Electrons and leptonic emission

Electron cooling time scales

Complementing the numerics with analytical solutions in the limiting regimes

AIP

Setup Protons and hadronic emission Electrons and leptonic emission

Cooling electron spectra

Freely cooling spectra vs. steady state solution

Winner, CP+ (2019)

- freely cooling solution develops cutoffs: numerical solution more diffusive in extreme energy regimes
- steady state spectrum approaches analytical solution

Setup Protons and hadronic emission Electrons and leptonic emission

Sedov-Taylor blast wave: spectral evolution

Winner, CP+ (2019)

AIP

$$E_0 = 10^{51}~{
m erg},~n_{
m gas} = 1~{
m cm}^{-3},~T_0 = 10^4~{
m K},~B = 1~{
m \mu G}$$

Setup Protons and hadronic emission Electrons and leptonic emission

Sedov–Taylor blast wave: radial contribution

Setup Protons and hadronic emission Electrons and leptonic emission

SN 1006: CR electron acceleration models

- different obliquity dependent electron acceleration efficiencies:
 - 1. preferred quasi-perpendicular acceleration (PIC simulations)
 - 2. constant acceleration efficiency (a straw man's model)
 - 3. preferred quasi-parallel acceleration (like CR protons)

Setup Protons and hadronic emission Electrons and leptonic emission

CR electron acceleration: quasi-perpendicular shocks

Christoph Pfrommer

Setup Protons and hadronic emission Electrons and leptonic emission

CR electron acceleration: constant efficiency

Christoph Pfrommer

Setup Protons and hadronic emission Electrons and leptonic emission

CR electron acceleration: quasi-parallel shocks

Christoph Pfrommer

Setup Protons and hadronic emission Electrons and leptonic emission

SN 1006: multi-frequency spectrum

Winner, CP+ (2020)

• quasi-parallel acceleration model fits multi-frequency spectrum

Setup Protons and hadronic emission Electrons and leptonic emission

SN 1006: multi-frequency spectrum

Winner, CP+ (2020)

- quasi-parallel acceleration model fits multi-frequency spectrum
- GeV regime: leptonic inverse Compton dominates
- TeV regime: hadronic pion decay

Setup Protons and hadronic emission Electrons and leptonic emission

Steady-state vs. evolved CR electron spectra

3D MHD-CR simulations of isolated forming galaxies with evolving electron spectra

Werhahn+ (in prep.): PRELIMINARY

Setup Protons and hadronic emission Electrons and leptonic emission

Steady-state vs. evolved CR electron spectra

3D MHD-CR simulations of isolated forming galaxies with evolving electron spectra

Steady-state vs. evolved CR electrons: emission maps

3D MHD-CR simulations of isolated forming galaxies with evolving electron spectra

Conclusions for cosmic ray physics in galaxies

CR physics tools:

- Shock finder enables CR acceleration in MHD simulations
- CR hydrodynamics enables capturing CR dynamics: extensions to 2-moment spectral and spatial CR transport (Timon Thomas)
- CR electron spectral transport (CREST): multi-frequency spectra and emission maps

Conclusions for cosmic ray physics in galaxies

CR physics tools:

- Shock finder enables CR acceleration in MHD simulations
- CR hydrodynamics enables capturing CR dynamics: extensions to 2-moment spectral and spatial CR transport (Timon Thomas)
- CR electron spectral transport (CREST): multi-frequency spectra and emission maps

CR acceleration:

- TeV shell-type SNRs probe magnetic coherence scale in ISM
- hybrid-PIC simulations of p⁺ acceleration agree with global SNR simulations
- global SNR simulations imply preferred quasi-parallel e⁻ acceleration: new intermediate instability modifies physics of e⁻ acceleration (Mohamad Shalaby)

Setup Protons and hadronic emission Electrons and leptonic emission

CRAGSMAN: The Impact of Cosmic RAys on Galaxy and CluSter ForMAtioN

AIP مورد

Christoph Pfrommer

Setup Protons and hadronic emission Electrons and leptonic emission

Literature for the talk

Cosmic ray acceleration:

- Pfrommer, Pakmor, Schaal, Simpson, Springel, *Simulating cosmic ray physics on a moving mesh*, 2017, MNRAS, 465, 4500.
- Pais, Pfrommer, Ehlert, Pakmor, The effect of cosmic-ray acceleration on supernova blast wave dynamics, 2018, MNRAS, 478, 5278.
- Pais, Pfrommer, Ehlert, Werhahn, Winner, Constraining the coherence scale of the interstellar magnetic field using TeV gamma-ray observations of supernova remnants, 2020, MNRAS, 496, 2448.
- Pais, Pfrommer, Simulating TeV gamma-ray morphologies of shell-type supernova remnants, 2020, MNRAS, 498, 5557.
- Winner, Pfrommer, Girichidis, Pakmor, Evolution of cosmic ray electron spectra in magnetohydrodynamical simulations, 2019, MNRAS, 488, 2235.
- Winner, Pfrommer, Girichidis, Werhahn, Pais, Evolution and observational signatures of the cosmic ray electron spectrum in SN 1006, 2020, MNRAS, 499, 2785.

< □ > < 同 > < 回 > < 回