ICM Physics

Questions:

- What is the current status of the field (state of the art)?
- What are the major unsolved questions?
- What would be transformational observations, simulations or theoretical developments?
- What can be done in the near future (also as a collaboration)?
- Will it be helpful to summarise our opinions on the above question in a form of a White Paper?

ICM Physics

Questions:

- What is the current status of the field (state of the art)?
- What are the major unsolved questions?
- What would be transformational observations, simulations or theoretical developments?
- What can be done in the near future (also as a collaboration)?
- Will it be helpful to summarise our opinions on the above question in a form of a White Paper?
- ⇒ restrict my 7-min part to theory and simulation

ICM Physics: state of the art

 recent cosmological simulations have been tranformative, but include little ICM physics beyond MHD (if at all)

ICM Physics: state of the art

- recent cosmological simulations have been tranformative, but include little ICM physics beyond MHD (if at all)
- idealized simulations:
 - cosmic ray (CR) hydrodynamics (steady state flux)
 - Braginskii MHD; anisotropic conduction: MTI, HBI, . . .
 - gravity waves → turbulence (not quite realistic Re)
 - hybrid PIC: firehose/mirror instabilities

ICM Physics: state of the art

- recent cosmological simulations have been tranformative, but include little ICM physics beyond MHD (if at all)
- idealized simulations:
 - cosmic ray (CR) hydrodynamics (steady state flux)
 - Braginskii MHD; anisotropic conduction: MTI, HBI, . . .
 - gravity waves → turbulence (not quite realistic Re)
 - hybrid PIC: firehose/mirror instabilities
- ⇒ how much physics do we need to include?
- \Rightarrow what are the correct descriptions/transport coefficients for CRs, heat, viscosity, . . . ?

mainly posed by observations:

 cooling flow problem: heating source, energy coupling mechanism, duty cycles?

- cooling flow problem: heating source, energy coupling mechanism, duty cycles?
- cool core vs. non-cool core dichotomy: origin, two separate populations or cyling between states?

How efficient is heating by AGN feedback?

How efficient is heating by AGN feedback?

How efficient is heating by AGN feedback?

AGNs cannot transform CC to NCC clusters (on a buoyancy timescale)

- cooling flow problem: heating source, energy coupling mechanism, duty cycles?
- cool core vs. non-cool core dichotomy: origin, two separate populations or cyling between states?

- cooling flow problem: heating source, energy coupling mechanism, duty cycles?
- cool core vs. non-cool core dichotomy: origin, two separate populations or cyling between states?
- (giant and mini) radio halos, radio relics: seed electrons, acceleration mechanisms, plasma physics?

- cooling flow problem: heating source, energy coupling mechanism, duty cycles?
- cool core vs. non-cool core dichotomy: origin, two separate populations or cyling between states?
- (giant and mini) radio halos, radio relics: seed electrons, acceleration mechanisms, plasma physics?
- ⇒ minimal necessary physics to model ICM?

ICM Physics: breakthroughs

Transformational observations, simulations or theoretical developments

breakthroughs anticipated: pinpoint role of ...

- turbulent velocities? ⇒ direct measurements of line broadening in outskirts (X-rays), clusters other than Perseus
- cosmic rays? ⇒ bubble content (SZE), heating rate, transport scheme (radio, gamma rays)
- kinetic physics? ⇒ connection to solar wind (local probes)

ICM Physics: breakthroughs

Transformational observations, simulations or theoretical developments

breakthroughs anticipated: pinpoint role of ...

- turbulent velocities? ⇒ direct measurements of line broadening in outskirts (X-rays), clusters other than Perseus
- cosmic rays? ⇒ bubble content (SZE), heating rate, transport scheme (radio, gamma rays)
- kinetic physics? ⇒ connection to solar wind (local probes)
- ⇒ cosmological simulations with Braginskii MHD, kinetic cosmic ray hydrodynamics

ICM Physics: breakthroughs

Transformational observations, simulations or theoretical developments

breakthroughs anticipated: pinpoint role of ...

- turbulent velocities? ⇒ direct measurements of line broadening in outskirts (X-rays), clusters other than Perseus
- cosmic rays? ⇒ bubble content (SZE), heating rate, transport scheme (radio, gamma rays)
- kinetic physics? ⇒ connection to solar wind (local probes)
- \Rightarrow cosmological simulations with Braginskii MHD, kinetic cosmic ray hydrodynamics
- \Rightarrow need a proper prediction . . .

Feedback heating: M87 at radio wavelengths

u= 1.4 GHz (Owen+ 2000)

 high-ν: freshly accelerated CR electrons low-ν: fossil CR electrons → time-integrated AGN feedback!

Feedback heating: M87 at radio wavelengths

 $\nu = \text{1.4 GHz (Owen+ 2000)}$

u = 140 MHz (LOFAR/de Gasperin+ 2012)

- high-ν: freshly accelerated CR electrons low-ν: fossil CR electrons → time-integrated AGN feedback!
- LOFAR: same picture → puzzle of "missing fossil electrons"
- solution: electrons are fully mixed with the dense cluster gas and cooled through Coulomb interactions $\Rightarrow \gamma$ -ray emission

AGN feedback = cosmic ray heating (?)

hypothesis: low state γ -ray emission traces π^0 decay within cluster

 cosmic rays excite Alfvén waves that dissipate the energy → heating rate

$$\mathcal{H}_{\mathsf{CR}} = - oldsymbol{v}_{\mathsf{A}} \cdot oldsymbol{
abla} P_{\mathsf{CR}}$$

 calibrate P_{CR} to γ-ray emission and **v**_A to radio and X-ray emission
 → spatial heating profile

AGN feedback = cosmic ray heating (?)

hypothesis: low state γ -ray emission traces π^0 decay within cluster

 cosmic rays excite Alfvén waves that dissipate the energy → heating rate

$$\mathcal{H}_{\mathsf{CR}} = -\boldsymbol{v}_{\mathsf{A}} \cdot \boldsymbol{\nabla} P_{\mathsf{CR}}$$

calibrate P_{CR} to γ-ray emission and **v**_A to radio and X-ray emission
 → spatial heating profile

ightarrow cosmic-ray heating matches radiative cooling (observed in X-rays) and may solve the famous "cooling flow problem" in galaxy clusters?

ICM Physics: neccessity of a White Paper?

mainly political question: what are we aiming for?

- transformative telescope (X-ays, SZE, radio)?
- collaborative efforts: funding agencies?

ICM Physics: neccessity of a White Paper?

mainly political question: what are we aiming for?

- transformative telescope (X-ays, SZE, radio)?
- collaborative efforts: funding agencies?
- if there is a really good motivation: do it
- if there is no clear goal: not sure it is worth the effort

